
XMLmind XML Editor Web Edition - Manual

Hussein Shafie

XMLmind Software
35, rue Louis Leblanc

78120 Rambouillet
France

Phone: +33 (0)9 52 80 80 37
xmleditor-support@xmlmind.com

www.xmlmind.com/xmleditor/

May 2, 2025

mailto:xmleditor-support@xmlmind.com
http://www.xmlmind.com/xmleditor/

 XMLmind XML Editor Web Edition - Manual

Table of Contents

Part I. What is XMLmind XML Editor Web Edition? .. 1

Chapter 1. Presentation ... 2

Chapter 2. How it works ... 5

Part II. Deploying XMLmind XML Editor Web Edition .. 7

Chapter 3. Installing XMLmind XML Editor Web Edition ... 8

Chapter 4. A quick demo on a single computer ... 10

Chapter 5. Deploying the sample XML editor ... 16

1. Starting xxeserver on Linux or on macOS ... 16

2. Starting xxeserver on Windows .. 19

Chapter 6. Integrating an XML editor into your web application ... 23

1. Overview ... 23

2. Sample web application integrating an XML editor ... 24

2.1. Document resources ... 31

Chapter 7. xxeserver command-line options ... 35

1. User preferences .. 41

Chapter 8. The xxe-app custom HTML element .. 43

Chapter 9. The xxe-client custom HTML element ... 46

Part III. Using XMLmind XML Editor Web Edition .. 48

Chapter 10. The basics .. 49

Chapter 11. Being productive ... 58

Appendix A. How to adapt an existing ".xxe" configuration file to XXEW 61

Appendix B. Troubleshooting ... 66

Appendix C. History of changes ... 68

Index ... i

 i

 XMLmind XML Editor Web Edition - Manual

Part I. What is XMLmind XML Editor Web Edition?

What exactly is XMLmind XML Editor Web Edition? How does it work? Learn about its strengths and
its weaknesses and decide whether it's worth giving this product a try.

 Part I. What is XMLmind XML Editor Web Edition? 1

 XMLmind XML Editor Web Edition - Manual

Chapter 1. Presentation

XMLmind XML Editor Web Edition (XXEW for short) is a JavaScript implementation of XMLmind
XML Editor running in the web browser, thus not requiring any installation on the user side.

Figure 1-1. A DITA <concept> opened in XXEW

Who will use it?

• XXEW is a strictly validating, near WYSIWYG, XML editor, featuring a streamlined, single
document, user interface and having out of the box support for DITA, DocBook, XHTML and TEI
Lite.

• XXEW is definitely not a programmer's tool and is intended to be used by technical writers,
engineers and scholars in order to author topics —relatively small, relatively independent from each
other, document chunks— which are part of large modular documents.

Who will deploy it?

• XXEW is essentially a 100% JavaScript, lightweight, software component which has been designed
to be easily integrated into any information system (e.g. a CMS). As such it aims to serve the same
purpose as rich text editors like TinyMCE or CKEditor, but in the context of structured editing. See
Part II, Chapter 6, Section 1. Overview.

 Chapter 1. Presentation 2

http://www.xmlmind.com/xmleditor/
http://www.xmlmind.com/xmleditor/
http://docs.oasis-open.org/dita/dita/v1.3/dita-v1.3-part2-tech-content.html
https://docbook.org/
https://html.spec.whatwg.org/multipage/
https://tei-c.org/guidelines/customization/lite/
https://tei-c.org/guidelines/customization/lite/
https://www.tiny.cloud/
https://ckeditor.com/

 XMLmind XML Editor Web Edition - Manual

• An XML editor web application is included in the software distribution. Therefore, out of the box,
XXEW may also be used to edit local and/or remote XML files. See The sample XML editor
application included in the XXEW distribution.

Differences with the desktop application

Desktop Application Web Edition

Requires installing the application on the user's
computer. (No need to install Java™. A private
Java runtime is included in most software
distributions.)

• Requires installing a very recent web browser
on the user's computer.

Restriction

At the time of this

writing only very

recent Blink-based

browsers like Google

Chrome or Microsoft

Edge and Gecko-

based browsers like

Firefox are supported.

Apple Safari, which

uses the WebKit

engine, is currently not

supported.

• Requires installing a Java 11+ runtime and
XXEW distribution on the server side and
running xxeserver, which is XXEW
backend.

More about all these requirements in Chapter 2.
How it works.

Multiple document user interface, adapted to
authoring large, complex, modular, documents,
including DITA maps or DocBook assemblies.

Single document user interface, adapted to
authoring topics, articles, chapters, sections, etc.

Restriction

Related restrictions:

• XXEW has less toolbar

buttons, less menus,

less menu items than its

desktop counterpart. It

also has less keyboard

shortcuts and its

keyboard shortcuts are

somewhat different.

• XXEW cannot be

used to insert element

references (e.g.

 Chapter 1. Presentation 3

 XMLmind XML Editor Web Edition - Manual

Desktop Application Web Edition

XInclude, DITA

@conref) into a

document.

No restrictions related to “local files”. When editing a document stored in a file which
is local to the computer running the web browser,
XXEW cannot render image references (e.g. DITA
<image href="..."/>) and cannot transclude
element references. The reason is that, for security
reasons, a web browser gives a web application
very little access to the local file system.

Multiple views of the document being edited may
be displayed side by side. These views are the
tree view, styled views (each view being specified
using a different CSS stylesheet), with or without
visible tags, and the XML source view.

Only a single view of the document being edited is
displayed at a time. It's possible to switch between
the tree view and one of the styled views. Visible
tags are not supported. The XML source view is
not supported.

Spell checking is @lang/@xml:lang aware and
automatically switches between dictionaries.

Spell checking is implemented by the web
browser, which is not convenient to use in the
context of multi-lingual documents.

Has advanced import DOCX, paste from MS-Word
and paste from web browser facilities. Can convert
XML to a variety of formats (PDF, Web Help,
EPUB, RTF, ODT, DOCX, etc.)

Has no import or export facilities.

Has CJK (Chinese, Japanese, and Korean) support.
Has right-to-left writing (Arabic, Persian, Hebrew,
etc) support.

Typing text using a CJK Input Method Editor

(IME) works but has limitations and bugs(1). No
right-to-left writing support.

Is also a MathML WYSIWYG editor. MathML rendered on screen (by the web browser),
but editable only using the tree view.

On Linux, the X Window Primary Selection is
natively supported.

On Linux, the X Window Primary Selection is
not natively supported by XXEW. This differs
from HTML <input type="text"> and
<textarea> and may be surprising for the user of
the web browser. However, an optional —crude—
emulation is available and works on all platforms.

 (1)For example, it's not possible to replace the text selection simply by tying text using the IME.

 Chapter 1. Presentation 4

http://www.w3.org/TR/xinclude-11/
http://www.w3.org/TR/MathML2/
https://en.wikipedia.org/wiki/X_Window_selection

 XMLmind XML Editor Web Edition - Manual

Chapter 2. How it works

Unlike rich text editors like TinyMCE or CKEditor, XMLmind XML Editor Web Edition (XXEW for
short) is not a standalone program entirely written in JavaScript. XXEW consists in two programs:
<xxe-client>, a 100% JavaScript frontend running in the web browser and xxeserver, a Java™
application backend running on a server computer.

Figure 2-1. XXEW architecture

xxeserver (ws://localhost:8080/xxe/ws)

Requests

• Events
• Request
results

<xxe-client> running in Chrome on the client side xxeserver running on the server sideNetwork

<xxe-client> peer #1

#2

#3

#4

#5

#6

Document
<topic id="???">

 <title>Test</title>

 <body>

 <p>Test.</p>

 </body>

</topic>

<xxe-client> cannot function without being connected to an xxeserver through the WebSocket
("ws://" URL) protocol or preferably, the WebSocket Secure ("wss://" URL) protocol.

<xxe-client> is lightweight and thus loads quickly in the web browser. It does just two things: display
as HTML+CSS a view of the XML document being edited and interact with the user.

xxeserver does everything else: load, validate, modify, save, close the XML document, execute
commands received from <xxe-client> in order to modify the XML document, compute which HTML
+CSS representing the view of the XML nodes is to be sent to <xxe-client>, etc. xxeserver is in fact
a server variant of the proven XMLmind XML Editor Desktop Application. Of course, as a full-fledged
server program, xxeserver can run on headless server computers and can handle multiple, concurrent
<xxe-client>s.

Benefits of this architecture

• <xxe-client> is lightweight(2) and thus loads quickly in the web browser.

• Being just a server variant of the XMLmind XML Editor desktop application, xxeserver shares

with the desktop application almost all its code, commands, configurations(3), add-ons and user
preferences. This also means that fixing a bug or enhancing the desktop application will almost
certainly fix the same bug or improve xxeserver in the same way.

• Because the state of <xxe-client> —including the XML document being edited— is maintained
by xxeserver (see "<xxe-client> peer" in the figure above), this state can be fully automatically

recovered when needed too(4). For example, if the user of <xxe-client>clicks the "Go back"

 (2)<xxe-client> is a custom HTML element. Its implementation comprises about 7 000 lines of CSS and 17 000 lines

of JavaScript (non obfuscated, non minified) at the time of this writing.

 (3)More information in "How to adapt an existing ".xxe" configuration file to XXEW".

 (4)This feature is so useful and so reassuring to the user that it is turned on by default. See boolean attribute

@autorecover of custom HTML element <xxe-client>.

 Chapter 2. How it works 5

https://www.tiny.cloud/
https://ckeditor.com/
https://en.wikipedia.org/wiki/WebSocket
http://www.xmlmind.com/xmleditor/
https://html.spec.whatwg.org/multipage/custom-elements.html
https://html.spec.whatwg.org/multipage/custom-elements.html

 XMLmind XML Editor Web Edition - Manual

button of the browser and then clicks "Go forward", then she/he will automatically find <xxe-
client> as she/he left it. Same reassuring behavior if the user clicks the "Reload current page"
button of the browser or if she/he closes and then reopens the browser tab/window containing <xxe-
client>.

Related information

• Appendix A. How to adapt an existing ".xxe" configuration file to XXEW

 Chapter 2. How it works 6

 XMLmind XML Editor Web Edition - Manual

Part II. Deploying XMLmind XML Editor Web Edition

Learn how to deploy XMLmind XML Editor Web Edition, whether a 5 minutes demo or a production
level deployment. Also learn how to integrate an XML editor into your own web application (for
JavaScript programmers).

 Part II. Deploying XMLmind XML Editor Web Edition 7

 XMLmind XML Editor Web Edition - Manual

Chapter 3. Installing XMLmind XML Editor Web
Edition

Requirements

On the server side (computer running xxeserver, the backend of XXEW):

• Multi-core computer having at least 8Gb(5) of RAM. The largest number of processor cores and the
largest amount of memory, the best.

• Officially supported only on: Windows 10+ 64-bit, macOS 14.x (Sonoma) and 15.x (Sequoia) Intel®
or Apple® Silicon processor and Linux.

• Java™ 11+.

• Ports 18078 and 18079 (secure connection) which are used by default by xxeserver to listen to
client connections must not be blocked by your firewall.

On the client side (computer running the web browser):

• A very recent version of Google Chrome or any browser using the same Blink browser engine:
Edge, Opera, Brave, etc. Firefox works fine too, but without system clipboard integration. (Safari is
currently not supported. All mobile web browsers are definitely not supported.)

• Ports 18078 and 18079 (secure connection) which are used by default to connect to xxeserver must
not be blocked by your anti-virus, firewall, proxy, etc.

Installing a software distribution

Unpack the XXEW distribution inside any directory you want.

• On Windows, unzip the xxe-web-*-win.zip distribution. This distribution contains in bin/
jre64/, a very recent —generally the most recent— private OpenJDK Java™ runtime. Therefore no
need to install Java on the Windows computer running xxeserver.

• On the Mac, unpack the xxe-web-*-mac.tar.gz distribution. This distribution contains in bin/
jre/ (for Macs having an Intel® processor) and in bin/jrea/ (for Macs having an Apple® Silicon
processor), very recents —generally most recent— private OpenJDK Java™ runtimes. Therefore no
need to install Java on the Mac running xxeserver.

• On Linux and other Java™ 11+ platforms, unzip the xxe-web-*.zip distribution.

Make sure that you have a Java™ 11+ runtime installed on your machine. To check this, open a
terminal and type "java -version" followed by Enter.

~$ java -version

openjdk version "24" 2025-03-18

OpenJDK Runtime Environment (build 24+36-3646)

OpenJDK 64-Bit Server VM (build 24+36-3646, mixed mode)

Contents of the installation directory

The installation directory contains code and resources which are common to XMLmind XML Editor
Desktop Edition (XXE) and XMLmind XML Editor Web Edition (XXEW). The code and resources
which are specific to XXEW are found in subdirectory web/.

 (5)By default, xxeserver is configured to consume at most 2Gb.

 Chapter 3. Installing XMLmind XML Editor Web Edition 8

https://en.wikipedia.org/wiki/Blink_(browser_engine)

 XMLmind XML Editor Web Edition - Manual

addon/

This addon/ directory contains a number of add-ons which are bundled with XXE.

addon/config/

Contains configuration files for a number of document types: DocBook, DITA, XHTML, etc.

bin/

Contains XXE code (.jar files).

legal/, legal.txt
Contains legal information about third-party components used in XXE.

web/

Code and resources specific to XXEW.

bin/

Contains xxeserver.jar, the code of xxeserver and scripts used to start
xxeserver. Use shell script xxeserver on the Mac and on Linux. Use
xxeserver.bat and xxeservice.exe on Windows.

doc/

Contains XXEW documentation.

etc/

Empty directory which may be useful when running xxeserver (could contain a self-
signed certificate, a remote file access JSON specification file, etc).

legal/, legal.txt
Contains legal information about XXEW and about third-party components used in
XXEW.

lib/

All the Java™ class libraries needed to run xxeserver.

var/

Empty directory which may be useful when running xxeserver (typically contains
logs).

webapp/index.html

An HTML page containing the sample XML editor web application. This makes
the XXEW distributions ready to use out of the box without having to configure or
program anything.

webapp/xxeclient/

The CSS and JavaScript™ code of <xxe-client> and <xxe-app>.

 Chapter 3. Installing XMLmind XML Editor Web Edition 9

 XMLmind XML Editor Web Edition - Manual

Chapter 4. A quick demo on a single computer

Start xxeserver

1. Open a command prompt (Windows) or a terminal (Mac, Linux).

2. Go to directory XXE_INSTALL_DIR/web/bin/, XXE_INSTALL_DIR being the directory where
XMLmind XML Editor Web Edition (XXEW for short) has been installed.

3. Run xxeserver.bat (Windows) or xxeserver (Mac, Linux shell script).

C:\...\web\bin> xxeserver.bat

• xxeserver should run fine on any platform supporting Java™ 11+.

Tip

The Windows .zip distribution and the Mac .tar.gz distribution contain a

private copy of the most recent version of the Java runtime. Therefore, there is

generally no need to install Java on the computer running xxeserver.

Note

If xxeserver does not start, please refer to Troubleshooting: xxeserver

does not start.

• As explained in Part I, Chapter 2. How it works, xxeserver is mainly a WebSocket server.
However it has also been made an HTTP server in order to be able to run the sample XML
editor application described below without having to install anything other than XXEW.

• By default, xxeserver does not support secure connections (https://, wss:// URLs) and
listens to HTTP and WebSocket requests on port 18078. Of course, these simple settings can be
changed. See Chapter 7. xxeserver command-line options.

4. At the end of the demo, simply type Ctrl-C in the command prompt or terminal to stop xxeserver.

Open the page containing the sample XML editor application in your browser

1. Start a web browser on the computer running xxeserver(6).

Important

At the time of this writing only very recent Blink-based browsers like Google

Chrome or Microsoft Edge and Gecko-based browsers like Firefox are supported.

Apple Safari, which uses the WebKit engine, is currently not supported.

 (6)Please remember that this is nothing more than just a quick, 5 minutes demo. It's by no means a real world use case.

 Chapter 4. A quick demo on a single computer 10

https://en.wikipedia.org/wiki/WebSocket

 XMLmind XML Editor Web Edition - Manual

We recommend using Google Chrome or Microsoft Edge because these browsers

currently have the best support for editing local files and for integrating the system

clipboard with the XML editor.

2. In the address bar of the web browser, please type "http://localhost:18078/xxe/".

3. A sample XML editor application based on <xxe-client> is now ready to use.

Figure 4-1. A sample XML editor application based on <xxe-client>

Note

If the sample XML editor application does not load or does not work, please refer to

Troubleshooting: the sample XML editor web application does not work.

The sample XML editor application included in the XXEW distribution

The XXEW distribution includes a sample XML editor application. This application lets you create or
modify XML documents found:

• On the computer running the web browser. These are called local files.
• On the computer running xxeserver. These are called remote files.

In the case of this quick demo, these two computers are the same.

Which remote files may be accessed by XXEW and how these files are accessed —read-write or read-
only— may be configured. See Chapter 7. xxeserver command-line options. In the case of this quick

 Chapter 4. A quick demo on a single computer 11

 XMLmind XML Editor Web Edition - Manual

demo, XXEW has a read-write access to any file found in the home directory of the user who started
xxeserver.

While opening or saving remote files is seamless and works like in any desktop application, the same
cannot be said for local files. For security reasons, the browsers give web applications like the sample
XML editor very limited access to the local file system. On most browsers, the access to the local file
system is even minimal. For example, on browsers other than Google Chrome (or Microsoft Edge), Save
is equivalent to Save As.

Opening a DocBook document as a remote file

1. Click Open and select "Open Remote Document". The Remote File Chooser is displayed.

2. Select a remote XML file then click OK. The corresponding document is opened in the XML editor.

 Chapter 4. A quick demo on a single computer 12

 XMLmind XML Editor Web Edition - Manual

Opening a DocBook document as a local file

1. Click Open and select "Open Local Document". The Local File Chooser is displayed.

2. Choosing a local file involves two steps.

2.a. Click the "Open file" button. This displays the "Open File" dialog box of the web browser.

 Chapter 4. A quick demo on a single computer 13

 XMLmind XML Editor Web Edition - Manual

2.b. Select an XML file and also use the facility of this dialog box to copy the path of the
directory containing selected file, then click OK. The Local File Chooser now suggests to
proceed to step #2.

2.c. Type(7)(or paste) the file path of the directory containing selected file ("/home/hussein/
src/10xxe/demo/docbook" in this example). On some web browsers, notably when saving
a document, you'll also have to type the name of selected file ("docbook-image.xml" in this
example). The corresponding document is opened in the XML editor.

 (7)The file paths and file names you type in this dialog box are remembered across editing sessions. This means that you

can pick file paths and file names from the text field autocompletion lists rather than type the same values over and

over.

 Chapter 4. A quick demo on a single computer 14

 XMLmind XML Editor Web Edition - Manual

Notice that all the images found in the document are displayed as green "Picture" icons.

Remember

When you insert an image into a document opened as a local file, you'll

be able to see the inserted image. However, because the web browser

gives web applications very limited access to the local file system, if

you close the document and then reopen it, the newly inserted image is

now represented by , a green image placeholder icon. This is normal.

Nothing to worry about.

A possible workaround is to embed the image in the document rather than

simply reference its file. (XXEW lets you do this quite easily.) However,

you must keep in mind that embedding images may create huge XML files

and also may cause XML interchange problems.

Related information

• Chapter 5. Deploying the sample XML editor

 Chapter 4. A quick demo on a single computer 15

 XMLmind XML Editor Web Edition - Manual

Chapter 5. Deploying the sample XML editor

Why an HTTPS connection is really needed

The XXEW distribution includes a simple yet useful sample XML editor application. In the previous
chapter, you learned how to deploy it on a single computer, that is, xxeserver and the web browser
hosting the sample XML editor both running on the same computer. The URL of the HTML page
containing the sample XML editor was: http://localhost:18078/xxe/.

Let's suppose the IP address of localhost is 192.168.1.203. Nothing prevents you from starting a
web browser on a different computer and opening HTML page http://192.168.1.203:18078/xxe/
in it. You'll see the sample XML editor and it will work. However it will not work optimally as features
like

• editing local files,
• integrating the system clipboard with the XML editor,

require a secure context in order to work.

To make it simple, in order to establish a secure context, the HTML page containing the XML editor must
be served over "http://localhost" or "https://" URLs.

Figure 5-1. The Save and Clipboard buttons have orange indicators showing you which features are not
available in a non-secure context.

1. Starting xxeserver on Linux or on macOS

Let's suppose XMLmind XML Editor Web Edition (XXEW) has been installed in /opt/xxe/ and that
SSL certificate cert_192_168_1_203.pfx (where 192.168.1.203 is the IP address of your computer)
has been copied to /opt/xxe/web/etc/.

/opt/xxe/web/bin$ nohup xxeserver -pid ../var/xxeserver.pid \

 Chapter 5. Deploying the sample XML editor 16

https://www.w3.org/TR/secure-contexts/

 XMLmind XML Editor Web Edition - Manual

 -keystore ../etc/cert_192_168_1_203.pfx \

 -storepass changeit -keypass changeit \

 -logserver ../var/srv \

 > /dev/null 2>&1 &

• Unix command nohup lets you close the terminal used to execute the above command and logout
from the computer without shutting down xxeserver.

It would be clearly preferable to deploy xxeserver as a service but explaining how to do
this depends on the operating system used to run xxeserver and is out of the scope of this
documentation.

• Option "-pid ../var/xxeserver.pid" creates text file ../var/xxeserver.pid containing the
process ID of xxeserver.

xxeserver can then be stopped as follows:

/opt/xxe/web/bin$ kill -SIGTERM `cat ../var/xxeserver.pid`

Remember

Do not forget to delete file ../var/xxeserver.pid otherwise you'll not be able

to restart xxeserver.

• Options "-keystore ../etc/cert_192_168_1_203.pfx -storepass changeit -keypass
changeit" let you specify which SSL certificate to use.

Any option used to specify an SSL certificate will cause xxeserver to establish secure
connections. Because option -port has not been explicitly used, xxeserver URLs will be
wss://192.168.1.203:18079/xxe/ws and https://192.168.1.203:18079/xxe/.

• Option "-logserver ../var/srv" creates log files related to xxeserver as a WebSocket server
in directory ../var/srv/ (which will be created if it does not already exist). Such log files should
be rather empty because the default value of option -loglevel is "WARN,WARN", meaning just log
warnings and errors.

• Option "-logrequest ../var/req", not specified in above example, creates log files related to
xxeserver as an HTTP server in directory ../var/req/. These log files which contains records
such as "GET https://192.168.1.203:18079/xxe/index.html" and are rarely useful.

If you don't have an actual SSL certificate, option -selfsign lets you quickly generate a self-signed one.

/opt/xxe/web/bin$ nohup xxeserver -pid ../var/xxeserver.pid \

 -selfsign "CN=192.168.1.203,O=ACME Corp." ../etc/selfsign_192_168_1_203.pfx \

 -logserver ../var/srv \

 > /dev/null 2>&1 &

Of course, with a self-signed SSL certificate, all web browsers will report a security issue.

 Chapter 5. Deploying the sample XML editor 17

https://en.wikipedia.org/wiki/Nohup
https://en.wikipedia.org/wiki/Systemd

 XMLmind XML Editor Web Edition - Manual

Figure 5-2. Google Chrome reporting a security issue related to an SSL certificate

The user of the web browser will have to click Advanced and then "Proceed to xxeserver_address
(unsafe)" to be able to load the HTML page containing xxeserver client (which is the sample XML
Editor in this example). Generally this confirmation must be made just once, the first time you'll load the
HTML page containing the client. After that, the web browser will store your self-signed SSL certificate
as a “security exception”.

Figure 5-3. Google Chrome letting you accept the self-signed SSL certificate

 Chapter 5. Deploying the sample XML editor 18

 XMLmind XML Editor Web Edition - Manual

2. Starting xxeserver on Windows

Let's suppose XMLmind XML Editor Web Edition (XXEW) has been installed in C:\xxe\ and that SSL
certificate cert_192_168_1_26.pfx (where 192.168.1.26 is the IP address of your computer) has
been copied to C:\xxe\web\etc\.

On Windows, C:\xxe\web\bin\xxeserver.bat is of little use as there is no way to keep this
command running after you close the Command Prompt used to execute the command and even less, after
you log out from the computer.

On Windows, the only way to keep xxeserver running after you log out from the computer is to install it
and start it as a system service. This is achieved by using Windows Service Wrapper (WinSW), a quality,
proven, open source software.

Checking that xxeserver works on your computer

Before using C:\xxe\web\bin\xxeservice.exe (which is just a renamed WinSW.exe), make sure
that xxeserver actually works on your computer. This preliminary step is useful to check the following:

a. Your anti-virus software does not prevent xxeserver from starting.

b. Windows firewall does not block xxeserver connections.

c. The port used by xxeserver, by default 18078 (or 18079 if a SSL certificate has been specified as a
command-line option), is available.

Procedure:

1. Open a Command Prompt as an administrator and run xxeserver.

C:\xxe\web\bin> xxeserver.bat

2. In the address bar of your web browser, type "http://localhost:18078/xxe/" then select
New|New Local Document to create a document of any kind and finally click Close to close this
blank document.

3. Type Ctrl-C in the Command Prompt to shutdown xxeserver.

How to operate xxeservice

1. Open a Command Prompt as an administrator in order to install and start xxeservice.

C:\xxe\web\bin> xxeservice.exe install

C:\xxe\web\bin> xxeservice.exe start

C:\xxe\web\bin> xxeservice.exe status

install

Install the service, that is, register it with Windows service manager.

start

Start the service.

status

Check the current status of the service: NonExistent (service not installed), Started
(service is running) or Stopped (service installed but not running).

Remember that xxeservice.exe is just a renamed WinSW.exe, therefore more information about
xxeservice (that is, WinSW) sub-commands is found in Usage.

 Chapter 5. Deploying the sample XML editor 19

https://github.com/winsw/winsw
https://github.com/winsw/winsw/tree/v2.12.0#usage

 XMLmind XML Editor Web Edition - Manual

2. In the address bar of your web browser, type "http://localhost:18078/xxe/" then select
New|New Local Document to create a document of any kind and finally click Close to close this
blank document.

3. If you are curious, restart your computer and repeat previous step to check that xxeservice is still
running after the computer is restarted.

4. Open a Command Prompt as an administrator in order to stop and uninstall xxeservice.

C:\xxe\web\bin> xxeservice.exe stop

C:\xxe\web\bin> xxeservice.exe status

C:\xxe\web\bin> xxeservice.exe uninstall

stop

Stop the service.

uninstall

Uninstall the service.

Actually deploying xxeservice

Out of the box, C:\xxe\web\bin\xxeservice.exe, whose configuration file is in C:\xxe\web\bin
\xxeservice.xml, is not very useful. The <arguments> element found in this XML configuration file
contains the same basic options as those found in C:\xxe\web\bin\xxeserver.bat.

<arguments>-Xss4m -Xmx2048m -Djava.awt.headless=true

-DXXE_ADDON_PATH="%XXE_ADDON_PATH%" -DXXE_PREFS_DIR="%XXE_PREFS_DIR%"

-classpath "%XXESRVCP%" com.xmlmind.xmleditsrv.server.StartServer

-index "%BASE%\..\webapp\index.html"</arguments>

With this configuration:

• The HTML page containing the sample XML editor is http://localhost:18078/xxe/. Hence
you'll have a secure context only if you run the web browser on the same computer as xxeservice.

• In practice, the sample XML editor only lets you edit local files. By default, no matter which user
account was used to start xxeservice, access to remote files is limited to the “home directory” of
LocalSystem, the system account used by the Windows service manager.

The <arguments> element which follows contains more useful options(8):

<arguments>-Xss4m -Xmx2048m -Djava.awt.headless=true

-DXXE_ADDON_PATH="%XXE_ADDON_PATH%" -DXXE_PREFS_DIR="%XXE_PREFS_DIR%"

-classpath "%XXESRVCP%" com.xmlmind.xmleditsrv.server.StartServer

-loglevel INFO -logserver "%BASE%\..\var\srv"

-keystore "%BASE%\..\etc\cert_192_168_1_26.pfx" -storepass changeit -keypass changeit

-faccess "%BASE%\..\etc\remote_files_conf.json"

-index "%BASE%\..\webapp\index.html"</arguments>

• Variable %BASE% is predefined by xxeservice and is substituted with the path of the directory
containing xxeservice.exe (which is C:\xxe\web\bin\ in this example).

Remember that xxeservice.exe is just a renamed WinSW.exe, therefore more information about
the <arguments> element, environment variables, etc, is found in XML configuration file.

 (8)You'll have to edit C:\xxe\web\bin\xxeservice.xml using a text or XML editor in order to change the

<arguments> element.

 Chapter 5. Deploying the sample XML editor 20

https://www.w3.org/TR/secure-contexts/
https://github.com/winsw/winsw/blob/v2.12.0/doc/xmlConfigFile.md#xml-configuration-file

 XMLmind XML Editor Web Edition - Manual

• By default, the value of option -loglevel is "WARN,WARN", meaning just log warnings and errors.
Here, with "INFO" (or equivalently "INFO,WARN") we want xxeserver to be a little more verbose.

• Option "-logserver %BASE%\..\var\srv" creates log files related to xxeserver as a WebSocket
server in directory %BASE%\..\var\srv\ (which will be created if it does not already exist).

• Options "-keystore %BASE%\..\etc\cert_192_168_1_26.pfx -storepass changeit -
keypass changeit" let you specify which SSL certificate to use.

Any option used to specify an SSL certificate will cause xxeserver to establish secure
connections. Because option -port has not been explicitly used, xxeserver URLs will be
wss://192.168.1.26:18079/xxe/ws and https://192.168.1.26:18079/xxe/.

• Option "-faccess %BASE%\..\etc\remote_files_conf.json" points to a JSON configuration
file specifying which remote files may be accessed by xxeserver client (which is the sample XML
Editor in this example). In this example, remote_files_conf.json contains just a single line
letting the sample XML Editor access any file found in C:\work.

[{ "label": "Work", "uri": "file:/C:/work" }]

If you don't have an actual SSL certificate, option -selfsign lets you quickly generate a self-signed one.

<arguments>-Xss4m -Xmx2048m -Djava.awt.headless=true

-DXXE_ADDON_PATH="%XXE_ADDON_PATH%" -DXXE_PREFS_DIR="%XXE_PREFS_DIR%"

-classpath "%XXESRVCP%" com.xmlmind.xmleditsrv.server.StartServer

-loglevel INFO -logserver "%BASE%\..\var\srv"

-selfsign "CN=192.168.1.26" "%BASE%\..\etc\selfsign192_168_1_26.cert"

-faccess "%BASE%\..\etc\remote_files_conf.json"

-index "%BASE%\..\webapp\index.html"</arguments>

Of course, with a self-signed SSL certificate, all web browsers will report a security issue.

Figure 5-4. Microsoft Edge reporting a security issue related to an SSL certificate

The user of the web browser will have to click Advanced and then "Continue to xxeserver_address
(unsafe)" to be able to load the HTML page containing xxeserver client (which is the sample XML

 Chapter 5. Deploying the sample XML editor 21

 XMLmind XML Editor Web Edition - Manual

Editor in this example). Generally this confirmation must be made just once, the first time you'll load the
HTML page containing the client. After that, the web browser will store your self-signed SSL certificate
as a “security exception”.

Figure 5-5. Microsoft Edge letting you accept the self-signed SSL certificate

 Chapter 5. Deploying the sample XML editor 22

 XMLmind XML Editor Web Edition - Manual

Chapter 6. Integrating an XML editor into your web
application

1. Overview

Let's assume your web application comprises a frontend running in the user's browser and a backend
running on a server computer. Let's call your frontend, MyFrontend and your backend, MyBackend.
MyFrontEnd and MyBackend communicate with each other through HTTP/HTTPS. MyFrontEnd
is implemented in HTML/CSS/JavaScript, this code possibly being totally or partially automatically
generated by MyBackend. MyBackend possibly makes use of a database of some sort also running on a
server computer.

In order to integrate XMLmind XML Editor Web Web Edition (XXEW) into your web application:

• MyFrontEnd HTML page must contain <xxe-client>, a custom HTML element defined by
JavaScript class (ECMAScript 6) XMLEditor.

• xxeserver, a WebSocket server, the backend of <xxe-client>, must run side by side with
MyBackend, though not necessarily on the same server computer.

Opening an XML document

1. MyFrontEnd JavaScript code queries MyBackend to obtain the XML source of the document to be
opened in XMLEditor.

2. MyFrontEnd obtains a “handle” to the instance of XMLEditor contained
in its HTML page, possibly using document.getElementById(id) or
document.getElementsByTagName("xxe-client"). Let's call this handle xmlEditor.

3. MyFrontEnd invokes xmlEditor.openDocument(xmlSource, documentURI).

Note

Method openDocument() must be passed a document URI identifying the

document being edited.

XMLEditor makes very few assumptions about how documents are stored by your

web application, so your are free to use a URI of any kind, suffice for this URI to be

meaningful to your web application.

Using custom URI schemes and/or custom URI authorities is fine as long as

the document URI is hierarchical. The syntax of a document URI is thus:

scheme://authority/path, with authority being optional. For example, the

following URIs are supported: https://cms.acme.com/docs/manual.xml,

docs:///0943_3561, and the following URIs are not: mailto:john@acme.com,

urn:isbn:9780582035874.

Creating a new XML document rather opening an existing one is done by invoking
xmlEditor.newDocumentFromTemplate(templateXMLSource, documentURI). The main
difference with openDocument is that after invoking newDocumentFromTemplate, the saveAsNeeded
property of XMLEditor is set to true.

 Chapter 6. Integrating an XML editor into your web application 23

https://exploringjs.com/es6/ch_classes.html
../apidoc/xxe/XMLEditor.html
../apidoc/xxe/XMLEditor.html
../apidoc/xxe/XMLEditor.html#openDocument
../apidoc/xxe/XMLEditor.html#newDocumentFromTemplate
../apidoc/xxe/XMLEditor.html#saveAsNeeded

 XMLmind XML Editor Web Edition - Manual

Saving changes

MyFrontEnd may invoke xmlEditor.saveDocument() to save the changes made to the document.
Because how documents are stored is entirely the responsibility of MyFrontEnd/MyBackend, this
method does nothing at all except setting the saveNeeded property of XMLEditor is set to false.

In order to let MyBackend actually save the document being edited, MyFrontEnd may invoke
xmlEditor.getDocument() to first obtain the XML source of the modified document and then send
this source to MyBackend.

Similarly, xmlEditor.saveDocumentAs(newDocumentURI), which may be used to implement the
"Save As" command, simply

• changes the documentURI property of XMLEditor to specified URI,

• sets the saveNeeded property is set to false,

• sets the saveAsNeeded property is set to false.

MyFrontEnd almost certainly needs to be informed when changes are made to the
document, therefore when these changes need to be saved to the document storage. This
is done by registering a "saveStateChanged" listener with XMLEditor as follows:
xmlEditor.addEventListener("saveStateChanged", listener). This listener will receive
SaveStateChangedEvents.

Closing the XML document being edited

MyFrontEnd may invoke xmlEditor.closeDocument() to close the document being edited, if any.

Several properties of XMLEditor, documentIsOpened, documentUID, documentURI, etc, may be used
to test whether a document is currently being edited.

2. Sample web application integrating an XML editor

XXE_INSTALL_DIR/web/doc/manual/apidemo/ contains newsapp.html, newsapp.js,
newapp.css, a sample web application we'll use in this chapter to explain how to integrate <xxe-
client> (defined by JavaScript class XMLEditor) into any other web application.

The NewsApp web application mimics a Content Management System (CMS) containing a number
of news articles about XMLmind Software products. A news article is a short HTML file. Some news

articles have an image attachment. NewsApp lets you browse or edit news articles and also “save”(9) the
changes you made to an article.

 (9)Previewing the modified news article in a new browser tab is used to simulate saving the document.

 Chapter 6. Integrating an XML editor into your web application 24

../apidoc/xxe/XMLEditor.html#saveDocument
../apidoc/xxe/XMLEditor.html#saveNeeded
../apidoc/xxe/XMLEditor.html#getDocument
../apidoc/xxe/XMLEditor.html#saveDocumentAs
../apidoc/xxe/XMLEditor.html#documentURI
../apidoc/xxe/XMLEditor.html#saveNeeded
../apidoc/xxe/XMLEditor.html#saveAsNeeded
../apidoc/xxe/XMLEditor.html#addEventListener
../apidoc/xxe/SaveStateChangedEvent.html
../apidoc/xxe/XMLEditor.html#closeDocument
../apidoc/xxe/XMLEditor.html#documentIsOpened
../apidoc/xxe/XMLEditor.html#documentUID
../apidoc/xxe/XMLEditor.html#documentURI
apidemo/newsapp.html
apidemo/newsapp.js
apidemo/newsapp.css
../apidoc/xxe/XMLEditor.html
https://en.wikipedia.org/wiki/Content_management_system

 XMLmind XML Editor Web Edition - Manual

Figure 6-1. newsapp.html opened in Google chrome; article "DITA Converter v3.12" opened in <xxe-
client>

In order to mimics a CMS, NewsApp loads https://www.xmlmind.com/news/xmlmind.xml, an RSS
file containing news items about XMLmind Software products. Each news item simulates a different,
standalone HTML document contained in the CMS.

Figure 6-2. Excerpts from https://www.xmlmind.com/news/xmlmind.xml

<rss version="2.0">

 <channel>

 <title>XMLmind News</title>

 <link>http://www.xmlmind.com/</link>

 ...

 <item>

 <title>Open Source XMLmind DITA Converter v3.12</title>

 <link>http://www.xmlmind.com/ditac/download.shtml</link>

 <description><![CDATA[Updated several

 software components. Official support of Java™ 19.

 “Plus distribution” now bundled with Apache

 FOP 2.8.
More info <a

 Chapter 6. Integrating an XML editor into your web application 25

https://www.xmlmind.com/news/xmlmind.xml
https://en.wikipedia.org/wiki/RSS

 XMLmind XML Editor Web Edition - Manual

href="http://www.xmlmind.com/ditac/changes.html#v3.12.0">here.]]></description>

 <pubDate>Mon, 05 Dec 2022 18:00:00 +0100</pubDate>

 <guid isPermaLink="true">http://www.xmlmind.com/ditac/changes.html#v3.12.0</guid>

 </item>

 ...

 </channel>

</rss>

Running NewsApp

As explained in Section 1. Overview, xxeserver normally runs side by side with MyBackend on a
server computer. Therefore the most “realistic” method for running NewsApp is:

1. Copy XXE_INSTALL_DIR/web/doc/manual/apidemo/newsapp.html, newsapp.js, news.css
and also the whole XXE_INSTALL_DIR/web/webapp/xxeclient/ to a directory published by
your HTTP server.

For example, on a Linux box having Apache httpd publishing the contents of $HOME/
public_html/ directory as http://localhost/~USER/, copy all these files to $HOME/
public_html/tmp/.

2. Start XXE_INSTALL_DIR/web/bin/xxeserver.

For example, on a Linux box:

.../web/bin$ xxeserver

3. Open newsapp.html in a web browser.

For example, on a Linux box, open http://localhost/~USER/tmp/newsapp.html.

Alternatively, if you don't have an HTTP server available for testing NewsApp, remember that
xxeserver is not only a WebSocket server but also an HTTP server.

1. Copy XXE_INSTALL_DIR/web/doc/manual/apidemo/newsapp.html, newsapp.js, news.css
to XXE_INSTALL_DIR/web/webapp/.

2. Start XXE_INSTALL_DIR/web/bin/xxeserver.

3. Open http://localhost:18078/newsapp.html in a web browser.

NewsApp initialization

An HTML page containing <xxe-client> must include xxeclient/xxeclient.css and
xxeclient/xxeclient.js as follows:

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 ...

 <link href="xxeclient/xxeclient.css" rel="stylesheet" type="text/css" />

 <script type="module" src="./xxeclient/xxeclient.js"></script>

 ...

 </head>

 <body>

 ...

 <xxe-client></xxe-client>

 ...

 </body>

 Chapter 6. Integrating an XML editor into your web application 26

 XMLmind XML Editor Web Edition - Manual

</html>

apidemo/newsapp.js, being a JavaScript module itself, imports everything it needs from JavaScript
module xxeclient/xxeclient.js. Therefore apidemo/newsapp.html does not need to directly
include xxeclient/xxeclient.js.

<html xmlns="http://www.w3.org/1999/xhtml">

 <head>

 ...

 <link href="xxeclient/xxeclient.css" rel="stylesheet" type="text/css" />

 <link href="newsapp.css" rel="stylesheet" type="text/css" />

 <script type="module">//<![CDATA[

import { NewsApp } from "./newsapp.js";

window.onload = (event) => {

 new NewsApp();

}

//]]></script>

 </head>

 <body>

 ...

 <table id="paneLayout">

 <tr>

 <td rowspan="4">

 <select id="itemList" size="6">

 <option value="">Please choose a news item.</option>

 </select>

 </td>

 <td><button type="button" id="viewButton">View</button></td>

 </tr>

 <tr><td><button type="button" id="editButton">Edit</button></td></tr>

 <tr><td><button type="button" id="saveButton">Save</button></td></tr>

 <tr><td><button type="button" id="closeButton">Close</button></td></tr>

 </table>

 <xxe-client id="xmlEditor"

 serverurl="${protocol}://${hostname}:${defaultPort}/xxe/ws"></xxe-client>

 </body>

</html>

JavaScript class NewsApp, part of JavaScript module apidemo/newsapp.js, does all its initializations in
its constructor.

import * as XUI from './xxeclient/xui.js';

import * as XXE from './xxeclient/xxeclient.js';

...

export class NewsApp {

 Chapter 6. Integrating an XML editor into your web application 27

https://exploringjs.com/es6/ch_modules.html

 XMLmind XML Editor Web Edition - Manual

 constructor() {

 this._itemList = document.getElementById("itemList");

 this._itemList.disabled = true;

 this._itemList.onchange = this.itemSelected.bind(this);

 this._viewButton = document.getElementById("viewButton");

 this._viewButton.disabled = true;

 this._viewButton.onclick = this.viewItem.bind(this);

 ...INITIALIZE 3 MORE BUTTONS...

 this._xmlEditor = document.getElementById("xmlEditor");

 this._xmlEditor.addEventListener("saveStateChanged",

 this.itemSaved.bind(this));

 this._xmlEditor.autoRecover = false;

 window.addEventListener("beforeunload", (event) => {

 if (this._xmlEditor.saveNeeded) {

 event.preventDefault();

 return (event.returnValue = true);

 }

 });

 this._items = [];

 this.loadNews(NewsStorage.baseURI + "xmlmind.xml");

 }

 async loadNews(rssURL) {...}

 ...

 itemSaved(event) {

 this.enableButtons();

 }

}

After obtaining a “handle” to <xxe-client> (defined by JavaScript class XMLEditor) using
document.getElementById, NewsApp configures this instance of XMLEditor by invoking method
addEventListener and by setting property autoRecover to false.

Remember

The default value of property autoRecover is true. This means, that by default, the

full state of <xxe-client> is automatically recovered when the user goes away from

the page containing <xxe-client>, either intentionally (e.g. the user clicks the "Reload

current page" button of the browser) or by mistake (e.g. the user closes the web browser

tab without saving the changes made to the document).

Having this automatic recovery feature enabled is very reassuring for the user but implies

that your web application as whole either have a similar automatic recovery feature or

is stateless. The sample XML Editor application, <xxe-app>, included in the XXEW

distribution is stateless and works fine with xmlEditor.autoRecover=true.

NewApp is also stateless and would work fine with xmlEditor.autoRecover=true.

However in this apidemo/newsapp.html demo, we have chosen to set autoRecover

 Chapter 6. Integrating an XML editor into your web application 28

../apidoc/xxe/XMLEditor.html
../apidoc/xxe/XMLEditor.html#addEventListener
../apidoc/xxe/XMLEditor.html#autoRecover
../apidoc/xxe/XMLEditor.html#autoRecover

 XMLmind XML Editor Web Edition - Manual

to false to explain what to do in the general case. The answer is the "beforeunload"

event listener found in the above excerpts of apidemo/newsapp.js.

Opening a news article

Opening the news article selected in the list is done by invoking XMLEditor method openDocument.
The optional readOnly parameter, which is false by default, may be used to open an XML document in
read-only mode.

Of course before doing that, you must make sure that the user does not unintentionally loose changes
made to the news article. This verification/confirmation step is implemented using XMLEditor properties
documentIsOpened and saveNeeded.

async openItem(readOnly) {

 let sel = this._itemList.selectedIndex;

 if (sel < 0) {

 return;

 }

 const selItem = this._items[sel];

 let confirmed = await NewsApp.confirmDiscardChanges(this._xmlEditor);

 if (!confirmed) {

 return;

 }

 let closed = await NewsApp.closeDocument(this._xmlEditor);

 if (!closed) {

 return;

 }

 let opened = await this._xmlEditor.openDocument(selItem.htmlSource,

 selItem.uri, readOnly);

 if (!opened) {

 return;

 }

 this.enableButtons();

}

static confirmDiscardChanges(xmlEditor) {

 if (!xmlEditor.documentIsOpened || !xmlEditor.saveNeeded) {

 // No changes.

 return Promise.resolve(true);

 }

 return XUI.Confirm.showConfirm(

 `"${xmlEditor.documentURI}" has been modified\nDiscard changes?`);

}

 Chapter 6. Integrating an XML editor into your web application 29

../apidoc/xxe/XMLEditor.html#openDocument
../apidoc/xxe/XMLEditor.html#documentIsOpened
../apidoc/xxe/XMLEditor.html#saveNeeded

 XMLmind XML Editor Web Edition - Manual

Important

As you can see it in the above and following excerpts of apidemo/newsapp.js, almost

all the methods of XMLEditor are asynchronous and return a Promise. This is why

async and await are used in these excerpts.

Saving a news article after modifying it

A modified news article is not really saved. Clicking the Save button just let the user preview the
modified news article in a new browser tab. This action is implemented using XMLEditor methods
getDocument and saveDocument.

async saveItem(event) {

 if (!this._xmlEditor.documentIsOpened || !this._xmlEditor.saveNeeded) {

 return;

 }

 let savedItem = this.findItem(this._xmlEditor.documentURI);

 if (savedItem === null) {

 // Should not happen.

 return;

 }

 const htmlSource = await this._xmlEditor.getDocument();

 if (htmlSource === null) {

 return;

 }

 savedItem.htmlSource = htmlSource;

 let saved = await this._xmlEditor.saveDocument();

 if (!saved) {

 return;

 }

 // No need to enableButtons, there is itemSaved.

 let newWin = window.open("", "_blank");

 newWin.document.write(htmlSource);

 newWin.document.close();

}

findItem(docURI) {

 for (let item of this._items) {

 if (item.uri === docURI) {

 return item;

 }

 }

 return null;

}

 Chapter 6. Integrating an XML editor into your web application 30

../apidoc/xxe/XMLEditor.html#getDocument
../apidoc/xxe/XMLEditor.html#saveDocument

 XMLmind XML Editor Web Edition - Manual

Closing the news article being viewed or edited

Closing the news article being viewed or edited is done by invoking XMLEditor method
closeDocument. Unless its optional discardChanges parameter, false by default, is set to true,
closeDocument will not close a document having unsaved changes.

static closeDocument(xmlEditor) {

 if (!xmlEditor.documentIsOpened) {

 return Promise.resolve(true);

 }

 return xmlEditor.closeDocument(/*discardChanges*/ true);

}

...

async closeItem(event) {

 let confirmed = await NewsApp.confirmDiscardChanges(this._xmlEditor);

 if (!confirmed) {

 return;

 }

 let closed = await NewsApp.closeDocument(this._xmlEditor);

 if (!closed) {

 return;

 }

 this._itemList.selectedIndex = -1;

 this.enableButtons();

}

2.1. Document resources

Let's suppose you want to insert an image into a news article. After using the Picture button of the toolbar
to insert an element and double-clicking (or right-clicking) the image placeholder icon, a dialog
box reporting an "openResource not implemented" error is displayed. See figure below.

Therefore the only way to specify the @src attribute of the newly inserted element is to use the
Edit Attributes dialog box. However, after doing that, the image placeholder icon just changes its color
from blue to green and you'll not see the image you have specified.

 Chapter 6. Integrating an XML editor into your web application 31

../apidoc/xxe/XMLEditor.html#closeDocument

 XMLmind XML Editor Web Edition - Manual

Figure 6-3. The NewsApp web application without any ResourceStorage registered with XMLEditor

This limitation is due to the fact that XMLEditor makes very few assumptions about how documents and
also document resources like images, video, audio, are stored by your web application.

This limitation may be removed by implementing a ResourceStorage and registering it with
XMLEditor using its resourceStorage property.

A ResourceStorage object must implement:

loadResource(uri)

Load and return the Resource having specified URI.

storeResource(data, uri)

Save resource data (for example, an image File dragged from the desktop and dropped onto
the image placeholder icon) to specified URI and return the corresponding newly created
Resource.

openResource(options)

Display a dialog box letting the user choose an existing resource and return the chosen
Resource object.

 Chapter 6. Integrating an XML editor into your web application 32

../apidoc/xxe/XMLEditor.html
../apidoc/xxe/ResourceStorage.html
../apidoc/xxe/XMLEditor.html#resourceStorage
../apidoc/xxe/ResourceStorage.html#loadResource
../apidoc/xxe/ResourceStorage.html#storeResource
../apidoc/xxe/ResourceStorage.html#openResource

 XMLmind XML Editor Web Edition - Manual

A Resource is a very simple object essentially associating the resource URI to the resource data (a
JavaScript Blob or File).

The NewsApp web application has a ResourceStorage implementation called NewsStorage and a
Resource implementation called NewsResource.

Figure 6-4. Excerpts from apidemo/newsapp.js

class NewsResource extends XXE.Resource {

 constructor(uri, data) {

 super(uri, data);

 }

}

class NewsStorage extends XXE.ResourceStorage {

 constructor(xmlEditor, newsItems) {

 super(xmlEditor);

 this._newsItems = newsItems;

 }

 async loadResource(uri) { ... }

 async openResource(options) {

 let uri = await NewsResourceChooser.showDialog(this._newsItems,

 options);

 if (uri === null) {

 // Canceled by user.

 return null;

 }

 return this.loadResource(uri);

 }

}

...

export class NewsApp {

 ...

 async loadNews(rssURL) {

 ...

 this._items = items;

 this._xmlEditor.resourceStorage =

 new NewsStorage(this._xmlEditor, items);

 ...

 }

 ...

}

NewsStorage.openResource displays a NewsResourceChooser dialog box to let the user choose an
image. See figure below.

 Chapter 6. Integrating an XML editor into your web application 33

../apidoc/xxe/Resource.html

 XMLmind XML Editor Web Edition - Manual

Figure 6-5. The NewsApp web application having its NewsStorage registered with XMLEditor

 Chapter 6. Integrating an XML editor into your web application 34

 XMLmind XML Editor Web Edition - Manual

Chapter 7. xxeserver command-line options

xxeserver, a WebSocket server, is the backend of XMLmind XML Editor Web Edition (XXEW). Its
client is custom HTML element <xxe-client>.

xxeserver [Advanced option]* [Server option]*

Advanced options

These options may be used to add, replace or modify some user preferences.

Important

Here the term user refers to the user who started xxeserver, not to the user who is using

<xxe-client>.

XMLmind XML Editor user preferences are documented in XMLmind XML Editor - Online Help,
Preference keys. Most user preferences do not apply to the Web Edition (XXEW). Examples:
displayScaling, useNativeFileChooser.

-putprefs property_file
Similar to -putpref except that several key/value pairs may be read from specified property
file..

-putpref key value
Adds or replace preference specified by key/value to the set of the user's preferences.

-delpref key
Removes preference specified by key from the set of the user's preferences..

Server options

-index file
Welcome file. Default: XXE_INSTALL_DIR/web/webapp/index.html, XXE_INSTALL_DIR
being the directory where XMLmind XML Editor Web Edition (XXEW for short) has been
installed. This file contains the sample XML editor application included in XXEW distribution.

Remember

This option implicitly sets the document root of xxeserver as an HTTP

server. For example, "-index C:\temp\myapp.html" sets the document

root to "C:\temp\". Therefore any file outside "C:\temp\" cannot be

accessed using an "http://" URI.

This also implies that all <xxe-client> code (xxeclient.js,

xxeclient.css, etc) must be found somewhere inside "C:\temp\" in order

to be accessed by xxeserver.

-port port
Port to be used by the server. Default: 18079 if HTTPS, 18078 otherwise. See option -
keystore below.

 Chapter 7. xxeserver command-line options 35

http://www.xmlmind.com/xmleditor/_distrib/doc/help/preferenceKeys.html
http://www.xmlmind.com/xmleditor/_distrib/doc/help/preferenceKeys.html

 XMLmind XML Editor Web Edition - Manual

-keystore file
Keystore location. No default. Implies HTTP, not HTTPS.

-storetype type
Type of the keystore. Default: pkcs12 (a .pfx file for example).

-storepass password
Password for the keystore. No default.

-keypass password
Password for the private key. No default.

-certalias alias
Alias of the keystore entry. No default.

-selfsign dname cert_file
If cert_file does not already exist, use specified distinguished name dname to create a self-

signed certificate in this file(10). Then use newly created or existing cert_file to expose only
secure connections to clients. Ignored if option -keystore is used. No default.

Note

The syntax of distinguished names (dname) is:

CN=cName,OU=orgUnit,O=org,L=city,S=state,C=countryCode

• cName - IP address or fully qualified name of server host

• orgUnit - department or division name, e.g., 'Purchasing'

• org - large organization name, e.g., 'ABCSystems\, Inc.' (Notice the

'\' used to protect the ','.)

• city - city name, e.g., 'Palo Alto'

• state - state or province name, e.g., 'California'

• countryCode - two-letter country code, e.g., 'CH'

Each field must appear in the above order but it is not necessary to specify all

fields. Examples:

CN=192.168.1.203

CN=192.168.1.203,OU=Dev tests,O=ACME Corp.

CN=www.acme.com,O=ACME Corp.,L=San Diego,S=California,C=US

Tip

If dname is "auto", then cert_file may also optionally

contain substring "auto". In dname, "auto" is replaced by

"CN=IPv4_ADDRESS_OF_THIS_COMPUTER" and in cert_file, "auto" is

replaced by "selfsignIPv4_ADDRESS_OF_THIS_COMPUTER.pfx".

This spares you the effort of determining the IPv4 address of the computer

running xxeserver, which is handy in the case of a quick test. Example, if

the IPv4 address of the computer is 192.168.1.26 then "-selfsign auto

 (10) If needed to, the parent directories of this file are automatically created too.

 Chapter 7. xxeserver command-line options 36

 XMLmind XML Editor Web Edition - Manual

..\etc\auto" is equivalent to "-selfsign CN=192.168.1.26 ..\etc

\selfsign192.168.1.26.pfx".

-loglevel level[,level]?
Set logging level to ALL, TRACE, DEBUG, INFO, WARN, ERROR or OFF. Second, optional, level
applies to the embedded Jetty server. Default: WARN,WARN.

-logrequests dir
Request logs will be created in this directory. Default: requests not logged.

-logserver dir
Server logs will be created in this directory. Default: not logged, messages are printed on the
console.

-pid pid_out_file
Write xxeserver process ID to specified file. Fails if specified file already exists. No default.

Useful to stop xxeserver by executing a command equivalent to the Linux example below:

kill -SIGTERM `cat pid_out_file`

-faccess config_file|-|~|+|dir_list
Specifies which directories may be accessed by the client.

• config_file is JSON configuration file specifying which directories may be accessed by
the client. JSON configuration files are documented in Remote file access.

• '-' may be used to specify: no file whatsoever.
• '~' may be used to specify: any file found in the home directory of the user running
xxeserver. Default value.

• '+' may be used to specify: any file on this computer.
• dir_list is a list of absolute or relative directory paths separated by ";". Append ":ro"

to path to make directory read-only. Append "=label" to path to give the directory a label.
Example: "/usr/local/doc:ro;/usr/share/doc:ro=Ref;/home/jjc;/opt/
doc=Repo".

-maxeditors integer
Maximum number of active XML editors. Default: 25.

-recoverdocgracetime seconds
Minimum amount of time (in seconds) during which an XML editor may recover its opened
document. Default: 300 (5 minutes).

Remote file access

xxeserver, the XML editor backend, may be configured to let <xxe-client>, the XML editor
frontend, access files belonging to its files system. These are called remote files as opposed to local files
which are found in the file system of the computer running the web browser.

The remote file access is specified by the means of a valid JSON configuration file which is passed to
xxeserver using command-line option -faccess. The syntax of this JSON configuration file is:

[

 object [, object]*

]

object = {

 Chapter 7. xxeserver command-line options 37

https://www.eclipse.org/jetty/

 XMLmind XML Editor Web Edition - Manual

"label": label_string ,

"uri": uri_string ,

"readonly": true|false ,

"prompt": prompt_string ,

"scheme": scheme_string ,

"username": username_string ,

"password": password_string

}

A JSON configuration file contains an array of objects. Each JSON object specifies the property of a
remote file root. <xxe-client> may access any file contained directly or indirectly in a remote file root.

JSON object properties are:

label

Required. This label is displayed by the Remote File Chooser. See example below.

uri

Required. The URI of the remote file root. Expected to be an absolute, hierarchical URI ending
with '/'. May be not only a "file:///" URI but also an "http://", "https://" or "ftp://"
URI.

• A remote file root having a "http://" or "https://" URI requires the "WebDAV
virtual drive plug-in" add-on to have been installed in XMLmind XML Editor Web
Edition (XXEW).

• A remote file root having a "ftp://" URI requires the "FTP virtual drive plug-in" add-
on to have been installed in XXEW.

Tip

This is best done by running the XMLmind XML Editor desktop

application, using menu item Options|Install Add-ons to download and

install this add-on and then starting xxeserver (which shares its add-

ons with the desktop application included in XXEW distribution).

The URI of the remote file root may reference client properties. These properties are passed to
xxeserver by the means of the @clientproperties attribute of <xxe-client> or <xxe-
app>See example below.

readonly

Optional. Specifies whether the remote file root is read-only or read-write. Read-only means
that the user of the XML editor can open files found there but when modified, will have to save
them to a different, read-write, remote file root.

prompt

Optional. String used to prompt the user for her/his credentials in order to access a remote file
root requiring user authentication. Rarely used.

scheme

Optional. Authentication scheme used to access a remote file root requiring user authentication.
Example: "BASIC", "DIGEST".

 Chapter 7. xxeserver command-line options 38

http://www.xmlmind.com/xmleditor/addons_doc.html#dav_vdrive
http://www.xmlmind.com/xmleditor/addons_doc.html#dav_vdrive
http://www.xmlmind.com/xmleditor/addons_doc.html#ftp_vdrive
http://www.xmlmind.com/xmleditor/addons_doc.html#ftp_vdrive
http://www.xmlmind.com/xmleditor/_distrib/doc/help/optionsMenu.html

 XMLmind XML Editor Web Edition - Manual

Remember

Always use pseudo-scheme "FTP LOGIN" when a remote file root has an

"ftp://" URI.

username

Optional. Username used to access a remote file root requiring user authentication.

password

Optional. Password used to access a remote file root requiring user authentication.

Example:

[

 { "label": "Home", "uri": "file:///home/~(user)/" },

 { "label": "Source Code", "uri": "file:///usr/local/src/",

 "readonly": true },

 { "label": "Documents", "uri": "http://192.168.1.203/dav/docs/",

 "username": "~(user)", "password": "~(DAV.password)",

 "scheme": "DIGEST" },

 { "label": "Backup", "uri": "ftp://192.168.1.203/backup/",

 "username": "admin", "password": "changeit",

 "scheme": "FTP LOGIN" }

]

About above example:

• Variable references ~(user) and ~(DAV.password) are substituted with their values. These
are client properties which are passed to xxeserver by the means of the @clientproperties
attribute of <xxe-client> or <xxe-app>. Example:

<xxe-client clientproperties="user=john;group=reviewers\u003Bauthors;DAV.password=changeit">

• The "Source Code" remote file root is read-only.

• The "Documents" remote file root requires WebDAV virtual drive plug-in to have been installed in
XXEW. The "Backup" remote file root requires FTP virtual drive plug-in to have been installed in
XXEW.

• Labels "Home", "Source Code", "Documents", "Backup", are rendered by the Remote File Chooser
as follows:

 Chapter 7. xxeserver command-line options 39

 XMLmind XML Editor Web Edition - Manual

Remote file permissions

In the above example, the remote file root labeled "Home" is mapped to file:///
home/~(user)/. This means that when <xxe-client> has been “personalized” with attribute
@clientproperties="user=john", xxeserver will access all files found in file:///home/
john/. With @clientproperties="user=jane", this will be file:///home/jane/, with
@clientproperties="user=jack", this will be file:///home/jack/, etc.

Let's suppose xxeserver was started on the server by user U belonging to group G, this implies that:

• User U/group G must have sufficient permissions to read and write any file found in file:///home/
john/, file:///home/jane/, file:///home/jack/, etc.

• All the files created by xxeserver in file:///home/~(user)/ will belong to user U/group G and
not to user john, jane or jack. So what if user john, jane or jack wants to read and/or modify
such files using tools other than XXEW?

Solving these problems is deemed feasible but depends on the operating system being used to run
xxeserver and is out of the scope of this document.

Tip

On Linux/macOS, a simple solution is to make all users U, john, jane, jack, etc, belong

to the same group G (e.g. staff) and to have all the members of this group have an

umask equal to u=rwx,g=rwx,o=rx.

Related information

• Chapter 9. The <xxe-client> custom HTML element

• Chapter 8. The <xxe-app> custom HTML element

 Chapter 7. xxeserver command-line options 40

https://en.wikipedia.org/wiki/Umask

 XMLmind XML Editor Web Edition - Manual

1. User preferences

XMLmind XML Editor, the desktop application (XXE), stores the user preferences in the following
directory:

• $HOME/.xxe10/ on Linux.

• $HOME/Library/Application Support/XMLmind/XMLEditor10/ on the Mac.

• %APPDATA%\XMLmind\XMLEditor10\ on Windows. Example: C:\Users\john\AppData
\Roaming\XMLmind\XMLEditor10\.

If this user preferences directory —let's call it XXE_PREFS_DIR— does not exist, XXE automatically
creates it and populates it with various sub-directories and files.

xxeserver shares XXE_PREFS_DIR with XXE. However, there are important differences:

• In the case of xxeserver, the “user” is the account which is used to run the server. Therefore
different users of <xxe-client> cannot have different user preferences.

• xxeserver works fine without any user preferences directory and will not automatically create one.

• xxeserver will never change the files and sub-directories found in the user preferences directory.

The -putprefs, -putpref, -delpref command-line options may be used to explicitly override
some of the user preferences found in XXE_PREFS_DIR/preferences.properties and/or
the default values of some user preferences, but they will never cause xxeserver to modify
XXE_PREFS_DIR/preferences.properties.

• XXE and xxeserver differ in their use of the sub-directories and files found in the user preferences
directory. See table below.

Sub-directory
or file

XXE xxeserver

preferences

.properties

Java™ property file containing the user
preferences. These user preferences are
all documented in Preference keys.

Most user preferences are ignored as
they only apply to XXE, the desktop
application.

However a number of user preferences
are considered and may prove to be
really useful, for example:

• addOpenLines and more
generally all preferences related
to XML formatting when saving a
document.

• autoDiffSupport

• lockLocalDocuments and more
generally all preferences related to
file locks.

• makeBackupFiles

• maxUndo

addon/ Some XXE addons may have been
installed in this sub-directory.

Add-ons which are not useful in the
context of XMLmind XML Editor
Web Edition (XXEW) are ignored:
translation add-ons, spell-checker
dictionaries, spell-checker plug-ins,
XSL-FO processor plug-ins, any add-

 Chapter 7. xxeserver command-line options 41

https://www.xmlmind.com/xmleditor/_distrib/doc/help/preferenceKeys.html
https://www.xmlmind.com/xmleditor/_distrib/doc/help/saveOptions.html#addOpenLines
https://www.xmlmind.com/xmleditor/_distrib/doc/help/toolsOptions.html#autoDiffSupport
https://www.xmlmind.com/xmleditor/_distrib/doc/help/openOptions.html#lockLocalDocuments
https://www.xmlmind.com/xmleditor/_distrib/doc/help/saveOptions.html#makeBackupFiles
https://www.xmlmind.com/xmleditor/_distrib/doc/help/editOptions.html#maxUndo

 XMLmind XML Editor Web Edition - Manual

Sub-directory
or file

XXE xxeserver

on in the Other category like "Bidi
Support", "Edit source", "Easy
Profiling", etc.

To make it simple, only configuration
add-ons are considered.

cache/ Serialized (that is, fast-loading) DTDs
and W3C XML Schemas may be found
in this sub-directory.

Ignored.

custom/ Customizations of some XXE
configurations may be found in this sub-
directory.

Ignored.

spell/ “Learned words” added by the user to
the spell-checker dictionaries may be
found in this sub-directory.

Ignored.

 Chapter 7. xxeserver command-line options 42

 XMLmind XML Editor Web Edition - Manual

Chapter 8. The <xxe-app> custom HTML element

The <xxe-app> custom HTML element implements the sample XML editor application included in the
XMLmind XML Editor Web Edition distributions.

<xxe-app

 autorecover = "false" | "true" : "true"

 autosave = Autosave_specification

 button2pastestext = "false" | "true" : "false"

 checkleaveapp = "false" | "true" : "true"

 clientproperties = Property_list

 documentstorage = "local" | "remote" | "both" : "local"

 serverurl = WebSocket_URL

>

Attributes

@autorecover

A cover for <xxe-client>/@autorecover.

@autosave

Specifies which files —local, remote or both— are to be automatically saved and which time
interval to use to save them.

The value of this attribute has the following syntax:

value = mode [S interval]? [S enabled]?

mode = local | remote | both

interval = strictly_positive_number s | m | h

enabled = on | off

Examples: "remote", "both 2m", "remote 3Os on", "both off".

Autosave modes are:

local

Automatically save local files (when this is technically possible, i.e. on Chrome, not
on Firefox).

remote

Automatically save remote files.

both

Automatically save both local and remote files.

Autosave interval units are:

s

Seconds.

m

Minutes.

h

Hours.

Default interval is "30s". Minimal interval is "10s".

 Chapter 8. The xxe-app custom HTML element 43

 XMLmind XML Editor Web Edition - Manual

The default value of enabled is "on". This flag specifies whether the autosave feature is initially
enabled. The user may change this setting at any time using the Autosave checkbox found in the
Options menu.

Remember

Unless this attribute is specified, the autosave facility of the sample XML

editor application is disabled (the "Autosave" checkbox is grayed).

@button2pastestext

A cover for <xxe-client>/@button2pastestext.

@checkleaveapp

If set to "true", when the document being edited has unsaved changes, ask the user to confirm
that she/he really wants to leave the page containing the application. Default value: "true".

Figure 8-1. The “leave page” confirmation dialog box of Google Chrome™

@clientproperties

A cover for <xxe-client>/@clientproperties.

@documentstorage

Specifies which files <xxe-app> can access:

local

Default value. <xxe-app> can access files found on the computer running the web
browser. These are called local files.

remote

<xxe-app> can access found on the computer running xxeserver. These are called
remote files.

Which remote files may be accessed and how these files are accessed —read-write or
read-only— may be configured in xxeserver. See Chapter 7. xxeserver command-
line options.

both

<xxe-app> can access both local and remote files.

Remember

It's not possible to Save As a local file as a remote file. It's not

possible to Save As a remote file as a local file.

@serverurl

A cover for <xxe-client>/@serverurl.

 Chapter 8. The xxe-app custom HTML element 44

 XMLmind XML Editor Web Edition - Manual

JavaScript API

The <xxe-app> custom HTML element is defined as follows:

window.customElements.define("xxe-app", XMLEditorApp);

The JavaScript API of class XMLEditorApp is found here.

Related information

• Chapter 7. xxeserver command-line options
• Chapter 9. The <xxe-client> custom HTML element

 Chapter 8. The xxe-app custom HTML element 45

../apidoc/xxe/XMLEditorApp.html

 XMLmind XML Editor Web Edition - Manual

Chapter 9. The <xxe-client> custom HTML element

<xxe-client>, a custom HTML element, is the frontend of XMLmind XML Editor Web Edition. It's a
client of backend xxeserver.

<xxe-client

 autoconnect = "false" | "true" : "true"

 autorecover = "false" | "true" : "true"

 button2pastestext = "false" | "true" : "false"

 clientproperties = Property_list

 serverurl = WebSocket_URL

>

Attributes

@autoconnect

Default: true. If true, automatically connect to xxeserver when creating a new document,
opening a document, etc.

@autorecover

Default: true. If true, automatically recover opened document when the user moves away
from the XML editor without closing the document being edited. This automatic document
recovery happens for example when:

• the user clicks the "Go back" button of the browser and then clicks "Go forward";

• the user clicks the "Reload current page" button of the browser;

• the user closes and then reopens the browser tab/window containing the XML editor.

@button2pastestext

Default: false. If true, selecting text by dragging the mouse automatically copies this text
to a dedicated private clipboard. Then clicking button #2 (middle button) elsewhere pastes
copied text at the clicked location. This allows to emulate the X Window Primary Selection on
all platforms.

Note that the X Window Primary Selection is not natively supported on platforms where it
should be (e.g. Linux) because it seems there is no way to update the Primary Selection without
updating the System Clipboard at the same time.

@clientproperties

Default: no client properties. Specifies a number of property name/property value pairs which
are typically used to associate the user of <xxe-client> with the xxeserver connection
(<xxe-client> peer; see Part I, Chapter 2. How it works). On the server side, these client
properties are seen by the <xxe-client> peer as Java™ system properties, which makes them
usable in different contexts (macros, access to remote file systems, etc).

Note that client properties may be used only to add new system properties and not to override
existing system properties. For example, specifying client property user.name=john will not
cause standard system property user.name to be modified on the server side.

This attribute is almost always set by some third-party JavaScript code used to integrate XXEW
with the information system of this third-party (e.g. a CMS). Example:

user=john;group=reviewers\u003Bauthors;DAV.password=changeit

The syntax of this attribute is:

 Chapter 9. The xxe-client custom HTML element 46

https://en.wikipedia.org/wiki/X_Window_selection

 XMLmind XML Editor Web Edition - Manual

properties = property [';' property]*

property = name '=' value

If value contains ';', this character may be escaped as '\u003B'. See above example: group
value is "reviewers;authors".

@serverurl

Specifies the "ws://" (WebSocket) or "wss://" (WebSocket Secure) URL of xxeserver.
Default: "${protocol}://${hostname}:${port}/xxe/ws", where ${protocol},
${hostname} and ${port} represent variable values computed using the URL of the HTML
page containing <xxe-client>.

Supported variables are:

Variable reference Substituted value

${protocol} "wss" if <xxe-client> loaded from an "https://" URL; "ws"
otherwise.

${hostname} Same host name or IP address as in the URL of the HTML page
containing <xxe-client>.

${port} Same port as in the URL of the HTML page containing <xxe-
client>, knowing that implicit HTTPS port is 443 and implicit
HTTP port is 80.

${defaultPort} 18079 if <xxe-client> loaded from an "https://" URL; 18078
otherwise.

Simple examples demonstrating how the default value of @serverurl is computed:

• <xxe-client> found in http://localhost:18078/xxe/index.html, @serverurl
is ws://localhost:18078/xxe/ws.

• <xxe-client> found in https://www.xmlmind.com/xmleditor/_web/
demo/index.html (implicit HTTPS port is 443), @serverurl is wss://
www.xmlmind.com:443/xxe/ws.

JavaScript API

The <xxe-client> custom HTML element is defined as follows:

window.customElements.define("xxe-client", XMLEditor);

The JavaScript API of class XMLEditor is found here.

Related information

• Chapter 7. xxeserver command-line options
• Chapter 8. The <xxe-app> custom HTML element

 Chapter 9. The xxe-client custom HTML element 47

../apidoc/xxe/XMLEditor.html

 XMLmind XML Editor Web Edition - Manual

Part III. Using XMLmind XML Editor Web Edition

Learn how to use XMLmind XML Editor Web Edition (XXEW for short). Desktop Application users
should feel at home with XXEW to a very large degree and may want to skip reading this part of the
document.

 Part III. Using XMLmind XML Editor Web Edition 48

 XMLmind XML Editor Web Edition - Manual

Chapter 10. The basics

A few things you need to learn before starting to use XMLmind XML Editor Web Edition (XXEW for
short).

XXEW is quite straightforward to use but you simply cannot guess how it works. While what you see
resembles your typical word processor, XXEW does not work like a word processor, nor like a text editor,

neither like other XML editors. Therefore this chapter is really a must read. (Corresponding 5min
screencast.)

Basic concepts

•
Patterns looking like this are text placeholders. You can click into (or tab to) such placeholders
and start typing.

• The node path bar, found above the document view, indicates what is selected or when there is no
explicit selection, the element containing the caret.

• XXEW has 2 different kinds of selection, the text selection and the node selection.

a. The text selection, which is given a pink background color, works like in any word processor

or text editor. Few editing commands apply to the text selection: Paste, Convert. For
example, you can convert the text selection to a bold or italic inline element.

b. The node selection looks different than the text selection: a thin red frame is drawn around the
selected nodes. The simplest way to select a node is to click on its name in the node path bar.

Most editing commands apply to the node selection.

The node selection may comprise several sibling nodes, for example, two contiguous
paragraphs. The easiest way to extend the node selection is to Shift-click before or after the
thin red frame.

 Chapter 10. The basics 49

https://www.xmlmind.com/xmleditor/_screencast/xxew_basics/xxew_basics.html
https://www.xmlmind.com/xmleditor/_screencast/xxew_basics/xxew_basics.html

 XMLmind XML Editor Web Edition - Manual

• The element directly containing the caret is always implicitly selected: no thin red frame around it.

For example if you want to insert a table before a paragraph, first click inside this paragraph (but

not inside any of its child elements, as this would implicitly select the child element) then use
Insert Before.

However, if you want to insert a list after a table, you cannot do that using the implicit element
selection because a table cannot directly contain some text. You'll have to first explicitly select this

table (e.g. by clicking on "table" in the node path bar) then use Insert After.

• Notice that the two editing commands mentioned above are Insert Before, Insert After.

XXEW also has less commonly used Insert editing command.

 Insert Before
Insert an element (or a text node) just before the node selection.

 Insert
Insert an element right here, at caret position.

 Insert After
Insert an element (or a text node) just after the node selection.

Note

Note that XXEW does not work like other XML editors. In other XML editors,

– Insert Before often means "Insert somewhere before selection".

– Insert often means "Insert somewhere inside selection".

– Insert After often means "Insert somewhere after selection".

• For the same reasons, XXEW has 3 paste commands and not just one: Paste Before, Paste,

Paste After. Unlike Insert, Paste is commonly used and works as expected by replacing the
text or node selection with the contents of the clipboard.

• When XXEW, which is a strictly validating XML editor, does not allow you to perform the editing
command you want, it's almost always because you didn't select the right element and/or you are not
using the right editing command.

For example, you have clicked inside a paragraph and attempt to use Insert to add a section
after it. This cannot work because a paragraph cannot contain a section. Instead, first select the

section which is the ancestor of the paragraph (e.g. click "section" in the node path bar) then use

Insert After (not Insert) and select "section" from the list.

Basic editing commands

What are the basic editing commands and where to find them?

The contextual menu of the node path bar

In XXEW, most basic editing commands are invoked by selecting an entry of the contextual
menu of the node path bar. While clicking an element name or node type (e.g. "#text") in the
node path bar just explicitly selects this element or node, right-clicking not only selects this
element or node but also displays a contextual menu containing all the basic editing commands.

 Chapter 10. The basics 50

 XMLmind XML Editor Web Edition - Manual

Figure 10-1. The contextual menu of the node path bar

The contextual menu of the text or node selection

Right-clicking inside the text selection (having a pink background color) or explicit node
selection (inside the thin red frame) displays a contextual menu containing all the basic editing
commands.

Figure 10-2. The contextual menu of the text or explicit node selection

Note that right-clicking in the document view when there is no text or explicit node selection
displays the contextual menu of the web browser. This contextual menu is only useful for fixing
a spell-checking mistake using the spell-checker of the web browser.

The toolbar

The left side of the toolbar is fixed and contains all the editing commands which are generic,
that is, not specific to a given document type (e.g. DocBook, DITA Topic, XHTML). Moreover
clicking , a small button found at the left of the Edit label, displays a menu which contains
even more generic commands.

 Chapter 10. The basics 51

 XMLmind XML Editor Web Edition - Manual

Figure 10-3. The left side of the toolbar and its popup menu

Commands Undo, Redo, Copy, Cut, Delete are found in all editors and will not

be described here. Commands Paste Before, Paste, Paste After and commands

Insert Before, Insert, Insert After have already been discussed in the previous section.

 Replace
Replace the node selection by a new, empty, element or text node. A dialog box is
displayed to let the user choose this new element or text node ("#text").

Figure 10-4. The same element chooser dialog box is used for the Insert Before,
Insert, Insert After, Replace, Convert and Wrap commands

 Convert
Replace the text or node selection by an element containing this text or node selection.
Example 1: select a paragraph and use Convert to convert it to a program listing.
Example 2: make a text selection mixing text and inline elements and use Convert to
convert it a bold inline element.

 Wrap
This command is a variant of Convert. The only difference between Wrap and
Convert is that, with Wrap, when a single element is selected, the selected element is

 Chapter 10. The basics 52

 XMLmind XML Editor Web Edition - Manual

given a new parent element. Example(11): select a paragraph and use Wrap to give it a
note parent.

 Edit Attributes
Displays a dialog box which may be used to add, remove and change the attributes of
implicitly or explicitly selected element.

 Search/Replace
Expands/collapses the text search/replace pane which is part of the toolbar.

Figure 10-5. The text search/replace pane is revealed after clicking "Search/Replace"

 Repeat
Repeats last repeatable command. See Repeat some of the commands you have
already executed.

 Command History
Displays a dialog box listing last repeatable commands from newest to oldest.

Copy as Text
Copies as plain text —just the characters, not the elements— the explicit text or node
selection to the clipboard.

 Split
Splits explicitly selected element in two parts, the split point being specified by caret
position.

Tip

Commands Split and Join are rarely used because for most

document types pressing Enter, Backspace and Delete mimic

the behavior corresponding keystrokes in a word processor and thus

may be used to split and join elements. Examples:

• Pressing Enter inside a paragraph or a list item splits this

element in two parts.

• Pressing Backspace at the beginning of a paragraph or a list

item joins this element to the preceding paragraph or a list

item.

• Pressing Delete at the end of a paragraph or a list item joins

this element to the following paragraph or a list item.

 (11) In this example, we'll assume that case a note must contain paragraphs hence a paragraph may not be converted to a

note.

 Chapter 10. The basics 53

 XMLmind XML Editor Web Edition - Manual

 Join
Joins explicitly selected element to its preceding sibling, an element of same type.
This gives a single element containing the child nodes of the two joined elements.
This command is the inverse command of Split.

Comment sub-menu
Sub-menu containing commands which may be used to insert a comment node at caret
position and to insert a comment before or after selected node.

Processing instruction sub-menu
Sub-menu containing commands which may be used to insert a processing instruction
node at caret position, to insert a processing instruction before or after selected node
and to change the target of a processing instruction.

 Declare Namespace
Displays a dialog box letting the user declare a namespace, change the prefix of a
namespace or make a namespace the default namespace.

Note

If the current document is conforming to a DTD, the dialog box

lets the user view the namespaces and their prefixes but not modify

them.

 Change Stylesheet
Displays a dialog box letting the user choose an alternative CSS stylesheet for the
styled view or on the contrary, no stylesheet at all, that is, switch to the tree view.

Adding images to your document

1. Use Insert Before, Insert, Insert After or, easier, the Picture button often found in the
right side of the toolbar to add an element representing an image to your document.

The image element will be inserted into your document but at first, you'll only see , the blue
image placeholder icon.

Note

An image placeholder icon is given different colors and different tooltips in order to

explain its presence:

 Blue

Image file not yet specified.

 Green

Image file specified but could not be displayed, either because the image

format is not supported (e.g. EMF) or because the document being edited

was opened from a local file (see note about local images).

 Chapter 10. The basics 54

 XMLmind XML Editor Web Edition - Manual

 Red

An error occurred when attempting to display the image. The image

tooltip contains an error message.

2. Specify an image file. There are 3 different methods to do this.

Double click or right-click the image placeholder icon
The quickest way to do this is to double click the image placeholder icon (or the image
itself if an image file has already been specified) or or right-click image placeholder icon
and select the "Change Image" entry from the contextual menu. This invokes the "Change
Image" command which changes the image file of an image element.

Figure 10-6. the "Change Image" menu entry

a. You'll first be prompted to choose an image file. The image file chooser being
displayed by the "Change Image" command depends on whether the document being
edited was opened from a local file or from a remote file.

Figure 10-7. The local image file chooser dialog box

 Chapter 10. The basics 55

 XMLmind XML Editor Web Edition - Manual

Figure 10-8. The remote image file chooser dialog box

b. You'll then be prompted to specify whether the chosen image file is to be referenced

by the image element or to be embedded(12) in the document.

Figure 10-9. The "Change Image" dialog box

Alternatively, drop an image file onto the image placeholder icon
Alternatively, drag an image file and drop it onto the image placeholder icon (or the image
itself if an image file has already been specified). This also invokes the "Change Image"
command, sparing you the effort of choosing an image file using a dialog box.

Note

When the document being edited was opened from a remote file, this

method is the only way to add to your document an image coming from a

local file.

Alternatively, specify the attribute of the image element pointing to the image file
Alternatively:

a. Click inside the image placeholder icon (or the image itself if an image file has
already been specified) to select the corresponding image element. The node path bar
will show you the name of this element. This image element depends on the type of
the document being edited: DITA Topic <image>, DocBook <imagedata>, XHTML
.

 (12)Not recommended for document size and possible interchange problem reasons.

 Chapter 10. The basics 56

 XMLmind XML Editor Web Edition - Manual

b. Use Edit Attributes to specify the attribute pointing to the image file.
This attribute depends on the type of the document being edited: DITA Topic
<image>/@href, DocBook <imagedata>/@fileref, XHTML /@src.

Note

When the document being edited was opened from a local file, there is

no way to display an image file specified this way. This has already been

explained in note about local images. However, after using this method,

the blue image placeholder icon will turn to green .

Related information

• Chapter 11. Being productive

 Chapter 10. The basics 57

 XMLmind XML Editor Web Edition - Manual

Chapter 11. Being productive

Previous chapter may have given you the impression that XXEW is straightforward to use but pretty low-
level. This is not the case. XXEW has most of the facilities found in word processors making the user

more productive at editing documents. (Corresponding 3min25 screencast.)

Quickly type some text

You can type text only if the caret is inside a textual node (text, comment or processing instruction nodes).
Press Tab to move the caret to the following textual node. Press Shift-Tab to move the caret to the
preceding textual node.

Press Ins (F1 on the Mac) to move the caret to the text node found after the element currently containing

the caret. If there is no such text node then add a new empty one, that is, add a text placeholder .

If you want to type some text before the element currently containing the caret, use Shift-Ins (Shift-
F1 on the Mac) instead of Ins.

Tip

The Ins (F1 on the Mac) keyboard shortcut is especially useful when you are typing

some text inside a bold or italic inline element and now want to end this inline element by

typing plain text after it.

Insert special characters

• Press Ctrl-SPACE to insert a non-breaking space character (unicode U+00A0).

• Type Esc n (that is, type Esc then type n) to display the dialog box letting you choose and insert a
special character by its name. Common special characters are: ldquo “, rdquo ”, trade ™, reg ®,
mdash —.

Figure 11-1. The "Insert Character By Name" dialog box

 Chapter 11. Being productive 58

https://www.xmlmind.com/xmleditor/_screencast/xxew_being_productive/xxew_being_productive.html

 XMLmind XML Editor Web Edition - Manual

Quickly select an element

• Ctrl-mouse-click (Cmd-mouse-click on the Mac) selects the node clicked upon. If you
continue to Ctrl-mouse-click without moving the mouse, this selects the parent of currently
selected node and so on until the root element of the document has been selected.

• Pressing Ctrl-ArrowUp (Cmd-ArrowUp on the Mac) selects the textual node containing the caret.
Pressing Ctrl-ArrowUp again selects the parent of currently selected node and so on until the root
element of the document has been selected. Press Ctrl-ArrowDown (Cmd-ArrowDown on the Mac)
to move the selection down the node hierarchy.

• Click the bullet or the number of a list item to select the corresponding list item element. More
generally if the view of an element has a “decorative label” of some kind, clicking this label selects
the corresponding element.

Repeat some of the commands you have already executed

Most commands which prompt the user to choose an argument from a list are made repeatable. For
example, command Insert After displays a dialog box letting you choose an element name or "#text" (a
text node) from a list. Once executed, there is a way to repeat exactly the same Insert After command
elsewhere in the document without having to display the element choosers dialog box.

• Pressing Ctrl-A (Cmd-A on the Mac) repeats the execution of last repeatable command, and this, as
always, if and only if this is allowed by the DTD or schema of the document given the current editing
context.

• Pressing Ctrl+Shift-A (Cmd+Shift-A on the Mac) displays a dialog box letting you choose a
repeatable command from a list in case you want to repeat the execution of a command other than the
last one.

The commands corresponding to the above keyboard shortcuts are Repeat and Command History.
These commands are are both found in the "Edit" menu of the toolbar.

Quickly add the same element

• Pressing Enter at the very end of a paragraph or list item adds a new paragraph or list item after
current one. Pressing Enter at the very beginning of a paragraph or list item adds a new paragraph or
list item before current one.

• Pressing Ctrl-Enter (Cmd-Enter on the Mac) anywhere inside a paragraph or list item adds a new
paragraph or list item after current one. Pressing Ctrl+Shift-Enter (Cmd+Shift-Enter on the
Mac) anywhere inside of a paragraph or list item adds a new paragraph or list item before current
one.

• Pressing Ctrl-Ins (Esc s on the Mac; that is, type Esc then type s) in implicitly or explicitly
selected element adds a new element of the same type after selected element. Pressing Ctrl+Shift-
Ins (Esc S on the Mac; that is, type Esc then type S) in implicitly or explicitly selected element
adds a new element of the same type before selected element.

Use as much as possible the commands found in the right side of the toolbar

The right side of the toolbar depends on the type (e.g. DocBook, DITA Topic, XHTML) of the document
being edited and contains many commands which are convenient to use. Moreover clicking , a small
button found at the bottom/right of the toolbar, displays a menu which contains even more convenient
commands.

 Chapter 11. Being productive 59

 XMLmind XML Editor Web Edition - Manual

Figure 11-2. The right side of the "DITA Topic" toolbar and its popup menu

• The "Text" section contain commands like Toggle Italic Inline Element, Toggle Bold Inline

Element, Convert to Plain Text, etc, which are similar to those found in the toolbars of most
word processors.

• The "Add" section contain commands like Paragraph, List Item, Picture, etc, which,

unlike Insert Before, Insert, Insert After do not require you to be precise in first implicitly
or explicitly selecting an element before executing the command. Instead, such commands adds
elements after the node selection or after the caret at a location where it is valid to do so and where it

makes sense(13) to do so.

Related information

• Chapter 10. The basics

 (13)DITA example: even if the content model of a DITA <p> element allows a <p> to contain a <table>, the new

<table> element will be added by Add Table somewhere after selected <p> and never inside selected <p>.

 Chapter 11. Being productive 60

 XMLmind XML Editor Web Edition - Manual

Appendix A. How to adapt an existing ".xxe"
configuration file to XXEW

Like XXE, the desktop app, xxeserver scans the XXEW_install_dir/addon/ and
XXE_user_preferences_dir/addon/ add-ons directories during its startup and load configurations
from there.

Unlike XXE, xxeserver automatically skips certain configuration elements (<binding>s other than
keyboard bindings, <attributeVisibility>, <elementVisibility>, <documentSetFactory>),
certain configuration files ("MathML support", "XMLmind XML Editor Configuration Pack", etc)
and certain add-on categories ("spell checker dictionaries", "spell checker plug-ins", "XSL-FO processor
plug-ins", etc) because these are either not useful in the context of XXEW or because these are not
yet supported by XXEW. Moreover, XXE features are not enabled in xxeserver. For example, the
ConvertDocument feature is not enabled, therefore <xxe-client> has no "Convert Document"
submenu.

Restriction

There is currently no way to force a running xxeserver to reload one or all of its

configurations.

Therefore you can very easily make XXEW reuse existing configurations created for XXE or if you want
to create a configuration for XXEW, simply follow the instructions which apply to XXE.

There is one big restriction though: interactive commands, that is, commands written in Java™ displaying
Java dialog boxes, won't work in XXEW.

Note

What happens in <xxe-client> if the user invokes a interactive Java command which

has not yet been “ported” to JavaScript™? Not much. If the command is found in a menu

or toolbar, the corresponding menu item/toolbar button will generally be disabled and the

user will not be able to invoke the command. At worse, if the user manages to invoke the

command, the command will do nothing at all.

Fortunately there is a simple way to mark parts of a configuration file as being specific to XXEW or, on
the contrary, as being specific to XXE. This way some configuration elements are used only when the file
is loaded by xxeserver and other configuration elements are used only when the file is loaded by the
desktop app.

Conditional processing of configuration files

It's strongly recommended to use the following processing-instructions to mark parts of a configuration
file as being specific to XXEW or, on the contrary, as being specific to XXE:

<?if TEST?>

...configuration elements...

<?else?>

...configuration elements...

 Appendix A. How to adapt an existing ".xxe" configuration file to XXEW 61

https://www.xmlmind.com/xmleditor/_distrib/doc/configure/what_is_a_config.html
https://www.xmlmind.com/xmleditor/_distrib/doc/configure/binding.html
https://www.xmlmind.com/xmleditor/_distrib/doc/configure/attributeVisibility.html
https://www.xmlmind.com/xmleditor/_distrib/doc/configure/elementVisibility.html
https://www.xmlmind.com/xmleditor/_distrib/doc/configure/documentSetFactory.html
https://www.xmlmind.com/xmleditor/_distrib/doc/help/generalOptions.html#featuresOptions
https://www.xmlmind.com/xmleditor/_distrib/doc/configure/config_file.html
https://www.xmlmind.com/xmleditor/_distrib/doc/configure/preprocessor.html

 XMLmind XML Editor Web Edition - Manual

<?endif?>

• TEST is XXE_CLIENT for configuration elements which are specific to XXEW and !XXE_CLIENT
for configuration elements which are specific to XXE.

• The <?else?> directive is optional.

Use this facility to mark

• interactive command declarations,

• macro command definitions invoking interactive commands,

• menu items, toolbar buttons, bindings invoking interactive commands,

• and more generally any functionality which is not useful in the context of XXEW

as being specific to XXE.

DocBook examples (excerpts from XXEW_install_dir/addon/config/docbook/docbook.xxe):

<?if !XXE_CLIENT?>

...

<command name="docb.editImageMap">

 <class>com.xmlmind.xmleditext.docbook.EditImageMap</class>

</command>

<?endif?>

<command name="{docb}setLinkEnd">

 <macro>

 <sequence>

 <test context="$implicitElement" expression="is-editable()" />

 <set variable="selectedElement" context="$implicitElement"

 expression="(ancestor-or-self::*[@%0])[last()]" />

 <?if XXE_CLIENT?>

 <command name="stop"

 parameter="xxeClientExecuteCommand editAttributes %0" />

 <?else?>

 <command name="putAttribute" parameter="%0" />

 <?endif?>

 </sequence>

 </macro>

</command>

<menu label="_DocBook">

 <?if !XXE_CLIENT?>

 <item label="Upgrade to DocBook _version 5..."

 command="docb.toV5"/>

 <separator/>

 <item label="_Set up olinks..."

 command="docb.olinkedDocuments"/>

 <separator/>

 <?endif?>

 ...

</menu>

 Appendix A. How to adapt an existing ".xxe" configuration file to XXEW 62

 XMLmind XML Editor Web Edition - Manual

Adapting an interactive macro to XXEW

In some cases, a menu command or a macro command ending with an interactive command can be easily
ported to XXEW by the means of the stop command.

The stop command is specific to XXEW and does not exist in XXE. It's a very simple command which
stops the execution of the macro and returns to its invoker a STOPPED status and its parameter as the result
of the command.

In the above {docb}setLinkEnd macro, "putAttribute attribute_name",
which is an interactive Java command, has been replaced by
"stop xxeClientExecuteCommand editAttributes attribute_name".

By convention, when <xxe-client> invokes a remote command (here it's {docb}setLinkEnd) and
this command stops and returns a result which starts with "xxeClientExecuteCommand", then <xxe-
client> invokes the command specified in this result.

In above example, editAttributes is an interactive command written in JavaScript which is the
XXEW equivalent of interactive Java command editAttributes.

Other DocBook example:

<command name="{docb}linkMenuItems2">

 <menu>

 <?if !XXE_CLIENT?>

 <item label="Follow Link"

 command="start" parameter="helper(defaultViewer) '%*'" />

 <?else?>

 <item label="Follow Link" command="stop"

 parameter="xxeClientExecuteCommand openExternalLink %*" />

 <?endif?>

 <item label="Set Link Target..."

 command="{docb}setLinkEnd" parameter="url" />

 </menu>

</command>

“Porting” an interactive Java command to XXEW

Reading the following section should give you an idea on how difficult it is to “port” an interactive Java
command to XXEW. It's by no mean a detailed, step by step, tutorial.

Let's use DocBook command LinkCallouts as an example. This interactive Java command, found in
the DocBook menu, links a sequence of <callout> elements to the corresponding sequence of <co> or
<area> elements (and, of course, also the other way round).

 First of all, the server-side, interactive Java command must be made “portable” to XXEW. This is the
case of LinkCallouts because:

• The command may be used interactively as well as non-interactively.

When passed an ID prefix as its parameter, LinkCallouts does its work and modify the document
being edited without having to display its Java dialog box.

 Appendix A. How to adapt an existing ".xxe" configuration file to XXEW 63

https://www.xmlmind.com/xmleditor/_distrib/doc/commands/menu.html
https://www.xmlmind.com/xmleditor/_distrib/doc/commands/macro.html
https://www.xmlmind.com/xmleditor/_distrib/doc/api/com/xmlmind/xmledit/control/CommandResult.Status.html
https://www.xmlmind.com/xmleditor/_distrib/doc/commands/editAttributes.html
https://www.xmlmind.com/xmleditor/_distrib/doc/docbook/docbook_menu.html#linkCallouts
https://www.xmlmind.com/xmleditor/_distrib/doc/docbook/docbook_menu.html#linkCallouts

 XMLmind XML Editor Web Edition - Manual

Figure A-1. The Java dialog box displayed by command LinkCallouts when used interactively

• The command can be executed on computers having no display (typically when the command is

invoked by xxeserver(14)).

LinkCallouts tests whether it can display its Java dialog box. When displaying a dialog box is
needed and this is not possible, instead of just failing, LinkCallouts returns a STOPPED status and
the result of the command contains all the information needed to populate the dialog box it would
have displayed.

Component dialogParent = docView.getDialogParent();

...

if (dialogParent == null) {

 // Cannot prompt user.

 return CommandResult.stopped(stoppedValue(

 prefix, discardExistingXRefs, lockDiscardExistingXRefs));

} else {

 // Prompt user for an ID prefix.

 PrefixDialog dialog = new PrefixDialog(dialogParent);

 Object[] result = dialog.getPrefix(prefix, discardExistingXRefs,

 lockDiscardExistingXRefs);

 if (result == null) {

 return CommandResult.CANCELED;

 }

 ...

 The second effort consists in implementing a client-side, interactive JavaScript command, displaying
a dialog box written in HTML+CSS+JavaScript, having the same registered command name as its Java
counterpart.

This client-side command is implemented by JavaScript class LinkCalloutsCmd and it is declared
to <xxe-client> as being docb.linkCallouts (for use by DocBook 4 documents) and
db5.linkCallouts (for use by DocBook 5+ documents). Excerpts from XXEW_install_dir/web/
webapp/xxeclient/docbook.js:

class LinkCalloutsCmd extends XXE.InteractiveRemoteCommand {

 constructor(commandName) {

 super(commandName);

 }

 resumeExecution(mode, docView, params,

 (14)xxeserver is designed to run on computers having no display hence xxeserver is started with -

Djava.awt.headless=true.

 Appendix A. How to adapt an existing ".xxe" configuration file to XXEW 64

https://www.xmlmind.com/xmleditor/_distrib/doc/api/com/xmlmind/xmledit/control/CommandResult.Status.html
https://www.xmlmind.com/xmleditor/_distrib/doc/api/com/xmlmind/xmledit/control/CommandResult.html#stopped-java.lang.Object-

 XMLmind XML Editor Web Edition - Manual

 stoppedCommandInfo, resolve, reject) {

 // stoppedCommandInfo syntax is:

 // 'discard'|'keep' ['!'] [';' prefix]

 ...

}

for (let n of ["docb.linkCallouts", "db5.linkCallouts"]) {

 XXE.ALL_LOCAL_COMMANDS[n] = new LinkCalloutsCmd(n);

}

Like all XXE.InteractiveRemoteCommands, LinkCalloutsCmd functions as follows:

1. It invokes the remote, that is, server-side, Java, command having the same name (e.g.
docb.linkCallouts, implemented by Java class LinkCallouts) without any parameter.

2. After receiving the result of the remote command (in method resumeExecution()), normally a
STOPPED status and a result value containing all the information needed to populate a dialog box
(an ID prefix, if any, and other settings in the case of docb.linkCallouts), LinkCalloutsCmd
displays its HTML+CSS+JavaScript dialog box.

Figure A-2. The HTML+CSS+JavaScript dialog box displayed by command LinkCalloutsCmd

3. Unless the user cancels this dialog box, LinkCalloutsCmd invokes one more time remote command
docb.linkCallouts, but this time with a parameter containing the ID prefix and the other settings
specified by the user in the dialog box.

4. Remote command docb.linkCallouts having all needed information to do its job, modifies
the document accordingly and returns an DONE result, which is returned as is as the result of
LinkCalloutsCmd.

Related information

• Part I, Chapter 2. How it works

 Appendix A. How to adapt an existing ".xxe" configuration file to XXEW 65

../apidoc/xxe/InteractiveRemoteCommand.html

 XMLmind XML Editor Web Edition - Manual

Appendix B. Troubleshooting

Troubleshooting: xxeserver does not start

• An error message similar to the following one is displayed in the terminal or Command Prompt used
to start xxeserver or is found in xxeserver log file.

xxeserver: cannot start server: Failed to bind to 0.0.0.0/0.0.0.0:18078

Possible causes:

– xxeserver is already running.

– OR the port 18078 is used by another server. On Linux, command "lsof -i :PORT_NUMBER"
will tell you which server is currently listening to port PORT_NUMBER.

Troubleshooting: the sample XML editor web application does not work

• When opening the HTML page containing the sample XML Editor, you see the following error
message:

Possible causes:

– The sample XML editor web application loads fine but your web browser is really not supported
(e.g. Safari, any mobile web browser).

You need to switch to a very recent version of Google Chrome or to any browser using the same
Blink browser engine: Edge, Opera, Brave, etc. Firefox works fine too, but without system
clipboard integration.

• When opening the HTML page containing the sample XML Editor, you see the following error
message:

Possible causes:

– The sample XML editor web application did not load. You are using a somewhat obsolete web
browser (e.g. Internet Explorer) or your web browser is supported but you have disabled its
JavaScript support.

• Opening the HTML page containing the sample XML Editor seems to work but using the New or
Open button displays the following error dialog box:

 Appendix B. Troubleshooting 66

https://en.wikipedia.org/wiki/Blink_(browser_engine)

 XMLmind XML Editor Web Edition - Manual

Possible causes (assuming that xxeserver and the sample XML editor web application are correctly
configured):

– xxeserver is not running.
– OR the port used by xxeserver (18078 in the above screenshot) is blocked by your anti-virus,

firewall or proxy.

 Appendix B. Troubleshooting 67

 XMLmind XML Editor Web Edition - Manual

Appendix C. History of changes

v1.6.0 (May 2, 2025)

xxeserver based on XMLmind XML Editor v10.11.

Enhancements:

• Just like the desktop app:

– DITA and DocBook documents may now embed TeX/LaTeX math or reference “image files”
containing TeX/LaTeX math (".tex" files).

– Shift-clicking the Copy tool bar button (or the Copy icon found in the contextual menu) now
copies the implicit or explicit selection as plain text. This is equivalent to selecting item "Copy
as Text" in the Edit menu of the toolbar.

– New CSS proprietary extension: inline-tree, a new value for the display property.

More information in v10.11 changes.

• MathML and TeX/LaTeX math are now rendered by MathJax, which is dynamically loaded by xxe-
client when needed to.

• Double-clicking on MathML (respectively TeX/LaTeX math) or right-clicking and choosing "Edit
MathML" (respectively "Edit TeX/LaTeX math") from the contextual menu opens a very simple
editor letting you modify this math.

• Right-clicking an image (respectively a remark) now displays the full contextual menu with "Change
Image" (respectively "Edit Remark") added as its first entry.

• xxeserver: upgraded nanojson to version 1.9.

• xxeserver embeds Jetty in order to implement an HTTP and WebSocket server. Upgraded Jetty to
version 11.0.25.

Bug fixes:

• Custom controls corresponding to remarks, command-button, value-editor, did not take into
account the fact that a document could be opened in read-only mode.

v1.5.0 (November 15, 2024)

xxeserver based on XMLmind XML Editor v10.10.

 Appendix C. History of changes 68

https://www.xmlmind.com/xmleditor/
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/restrict.html
https://www.xmlmind.com/xmleditor/changes.html#v10.11.0
https://www.mathjax.org/
https://www.xmlmind.com/xmleditor/_distrib/doc/help/remarkMenu.html
https://github.com/mmastrac/nanojson
https://www.eclipse.org/jetty/
https://www.xmlmind.com/xmleditor/_distrib/doc/help/remarkMenu.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/command-button.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/value-editor.html
https://www.xmlmind.com/xmleditor/

 XMLmind XML Editor Web Edition - Manual

Enhancements:

• Extending the right-click, contextual popup menu by the means of commands found in
"contextualMenuItems" namespaces (as always, just like in the desktop app) is now supported.
For example, if you right-click a DITA <xref> element, whether in the document view or in the
node path bar, two new menu items "Follow Link" and "Set Link Target" are added to the “normal”
contextual popup menu (containing Repeat, Cut, Copy, ..., Edit Attributes).

• xxeserver embeds Jetty in order to implement an HTTP and WebSocket server. Upgraded Jetty to
version 11.0.24.

• Added appendix "How to adapt an existing ".xxe" configuration file to XXEW" to "XMLmind XML
Editor Web Edition - Manual".

Bug fixes:

• Generated content inherited box-related style properties from their parent which, in some
cases, caused the rendering to be slightly incorrect. Example, excerpts from docbook51/css/
assembly.css:

instance,

instance[linking] {

 display: block;

 content: icon(left-link, navy)

 text(attr(linkend), font-family, monospace, color, navy)

 " " invoke("attributeValues", linking);

 margin-left: 4ex;

}

The generated content for the above text() was also given margin-left:4ex creating a large gap
between the link icon and the link text.

v1.4.0 (September 3, 2024)

xxeserver based on XMLmind XML Editor v10.9.

Enhancements:

• Improved the usability of the diagnostics pane displayed by the "Check Document Validity" button
by rendering error messages in a nicer, more readable, way.

• Added a "Show Content Model" item to the menu of <xxe-app>, the sample XML editor
application. Just like in the desktop application, this menu item opens a dialog box containing an
automatically generated reference manual listing all the elements and attributes specified in the DTD,
W3C XML Schema or RELAX NG schema of the document being edited.

• Content object attributes (CSS proprietary extension) generating an attributes pane in now
supported.

• xxeserver embeds Jetty in order to implement an HTTP and WebSocket server. Upgraded Jetty to
version 11.0.22.

Bug fixes:

• Firefox only: empty (e.g. newly created), styled, having a block or inline-block display, comments
and processing-instructions were rendered as a red line.

• In content objects generating form controls (CSS proprietary extensions) like gauge, a parameter
like "min, attr(min)" was not supported.

 Appendix C. History of changes 69

https://www.xmlmind.com/xmleditor/_distrib/doc/commands/custom_contextual_menu.html
https://www.eclipse.org/jetty/
https://www.xmlmind.com/xmleditor/
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/attributes.html
https://www.eclipse.org/jetty/
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/gauge.html

 XMLmind XML Editor Web Edition - Manual

• In content objects generating form controls (CSS proprietary extensions) like radio-buttons, a
empty attribute value was not visible. It is now rendered as "(empty string)".

• CSS system font values like "message-box", "caption", etc, were not correctly rendered.

v1.3.0 (June 17, 2024)

xxeserver based on XMLmind XML Editor v10.8.

Enhancements:

• When the document being edited has unsaved changes, the sample XML editor application (<xxe-
app>) now asks the user to confirm that she/he really wants to leave the page containing the
application. This feature corresponds to new attribute <xxe-app>/@checkleaveapp. Default
attribute value: "true".

Note that the document auto recovery feature is orthogonal to the above feature. The document
auto recovery feature in the sample XML editor application corresponds to new attribute <xxe-
app>/@autorecover. Default attribute value: "true".

• Added the "Comment Out" and "Uncomment" menu items to the Edit|Comment menu of the
toolbar. "Comment Out" replaces text selection or explicit node selection by a comment containing
the selection. "Uncomment" is inverse command of "Comment Out". It parses the content of
implicitly or explicitly selected comment and replaces this comment by parsed XML nodes.

This feature is a “port” from the desktop app. See "Comment menu".

• Added the "Remark" submenu to the Edit menu of the toolbar. A remark is simply a <?xxe-
remark?> processing-instruction nicely rendered as a “balloon” in the styled view. Double-clicking
on this balloon displays a remark editor. This remark editor may be used to create a new remark or to
reply to/modify an existing remark.

This feature is a “port” from the desktop app. See "Remark menu".

• All the content objects generating form controls (CSS proprietary extensions) are now supported. For
example, check-box, date-picker, radio-buttons, value-editor are supported.

However there a few limitations compared to the form controls supported by the desktop app:

– file-name-field is rendered like text-field. There is no button next to the text field
which opens a dialog box letting you choose a file.

– The following properties of gauge are ignored: low, high, optimum, low-color, high-
color, optimum-color.

– The following properties of spinner are ignored on the client-side: pattern, language,
country, variant, columns. That is, on the client-side, it's the web browser which is in
control of what the user can see and type.

– The following properties of date-picker, time-picker, date-time-picker are ignored
on the client-side: format, pattern, language, country, variant, columns. That is, on
the client-side, it's the web browser which is in control of what the user can see and type.

Bug fixes:

• The autorecover feature did not work when several documents were opened in several browser
tabs/windows.

• Firefox only: pasting some text into a element containing a large number of text lines (e.g. a large
<pre>) sometimes caused the caret to be scrolled out of sight.

 Appendix C. History of changes 70

https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/radio-buttons.html
https://www.xmlmind.com/xmleditor/
https://www.xmlmind.com/xmleditor/_distrib/doc/help/commentMenu.html
https://www.xmlmind.com/xmleditor/_distrib/doc/help/remarkMenu.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/check-box.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/date-picker.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/radio-buttons.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/value-editor.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/file-name-field.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/text-field.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/gauge.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/spinner.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/date-picker.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/time-picker.html
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/date-time-picker.html

 XMLmind XML Editor Web Edition - Manual

v1.2.0 (March 22, 2024)

xxeserver based on XMLmind XML Editor v10.7.

Enhancements:

• The DITA map, DocBook assembly and Ebook toolbars now have "Open Topic R/O" (open topic
in read-only mode) and "Open Topic" buttons. For example, in the case of a DITA <map> or
<bookmap>, these buttons open in a new browser tab the topic or sub-map referenced by selected
<topicref>.

• DITA, DocBook, XHTML, TEI Lite configurations: Ctrl-Alt-click (Option-Cmd-click
on the Mac) on an external http/https link now opens the corresponding page in a new tab. In
previous versions of XXEW, this action only followed internal links.

• xxeserver embeds Jetty in order to implement an HTTP and WebSocket server. Upgraded Jetty to
version 11.0.20.

• xxeserver -faccess option: in addition to config_file|-|~|+, this option now also supports
dir_list, where dir_list is a list of absolute or relative directory paths separated by ";".

• The xxe-web-eval-N_N_N distribution is now available as a Docker image called xmlmind/xxe-
web:N_N_N-eval. How to run this image as a container is documented in its Docker Hub page.

Bug fixes:

• When navigating to a folder containing files having very long names, the "Open Remote
Document" dialog box automatically became wider, which was somewhat annoying.

v1.1.0 (November 22, 2023)

xxeserver based on XMLmind XML Editor v10.6.

Enhancements:

• Typing text using a CJK Input Method Editor (IME) now works but has limitations and bugs. For
example, it's not possible to replace the text selection simply by typing text using the IME.

• Interactive commands written in JavaScript™ which are specific to a configuration are now
dynamically loaded when needed. DocBook's "Link callouts" is such command. This short and
simple command written in JavaScript first displays a dialog box letting the user choose an ID prefix,
then it invokes its server-side counterpart (the command written in Java™ used by XXE Desktop) to
actually do the job.

• Upgraded JavaScript module browser-fs-access to version 0.35.

• The following content objects (CSS proprietary extensions) are now supported: command-button
and all its variants: command-menu, insert-button, insert-after-button, insert-
before-button, insert-same-after-button, insert-same-before-button, replace-
button, convert-button, wrap-button, delete-button, add-attribute-button, set-
attribute-button, remove-attribute-button.

• xxeserver embeds Jetty in order to implement an HTTP and WebSocket server. Upgraded Jetty to
version 11.0.17.

Bug fixes:

• CSS extension property collapsible:yes was not honored for elements having an inline-
block or inline-table display.

 Appendix C. History of changes 71

https://www.xmlmind.com/xmleditor/
https://www.eclipse.org/jetty/
https://www.docker.com/
https://hub.docker.com/r/xmlmind/xxe-web
https://www.xmlmind.com/xmleditor/
https://www.xmlmind.com/xmleditor/_distrib/doc/docbook/docbook_menu.html#linkCallouts
https://github.com/GoogleChromeLabs/browser-fs-access
https://www.xmlmind.com/xmleditor/_distrib/doc/csssupport/command-button.html
https://www.eclipse.org/jetty/

 XMLmind XML Editor Web Edition - Manual

v1.0.0 (September 1, 2023)

xxeserver based on XMLmind XML Editor v10.5.

Bug fixes:

• After many user actions, the document view was automatically scrolled to show the location of the
caret, which was generally useless and annoying.

• Replaced <xxe-client>/@systemselection by much simpler <xxe-
client>/@button2pastestext. We could not get @systemselection="native" (e.g. with
Chrome on Linux) to work satisfactorily because it seems there is no way to update the X Window
Primary Selection without updating the System Clipboard at the same time.

v1.0.0-beta4 (August 2, 2023)

xxeserver based on XMLmind XML Editor v10.4.3 (not publicly released).

Enhancements:

• Dragging the column separator found at the right of a table cell may now be used to resize the table
column containing this cell. Note that this works even when a table cell has no border, hence no
visible column separator.

Bug fixes:

• When <xxe-client>/@systemselection was set to "emulate" (e.g. Firefox on Linux), dragging
the mouse over some text selected just a couple of characters then the text selection stopped by itself.

v1.0.0-beta3 (July 4, 2023)

xxeserver based on XMLmind XML Editor v10.4.2 (not publicly released).

Enhancements:

• Clicking inside the image representing the view of an image element now adds resize handles around
this image. Dragging a resize handle lets you interactively resize the image element (DocBook
example: <imagedata>) without having to manually change any of its attributes (DocBook
example: @contentwidth, @contentdepth).

The aspect ratio of an image element resized this way is automatically preserved. Drag a resize
handle while pressing the Ctrl key (Cmd key on the Mac) if you do not wish to preserve its aspect
ratio (i.e. if you want to distort the image).

• Added an Options submenu to the menu of the sample XML editor application. For now, this
submenu only contains a single checkbox: Autosave. This check box lets the user turn the autosave
feature on and off at will. This checkbox is disabled (grayed) unless the autosave feature has been
specified and configured using attribute @autosave.

• Shift-clicking on an element name displayed by the node path bar now selects all the child nodes of
this element. This is a handy alternative to using keyboard shortcut Escape ArrowDown.

• xxeserver embeds Jetty in order to implement an HTTP and WebSocket server. Upgraded Jetty to
version 11.0.15.

Bug fixes:

• When testing newest Safari against XXEW, its “peculiar” Web Socket client caused xxeserver
to raise a org.eclipse.jetty.io.EofException and from time to time —randomly— this
completely blocked xxeserver.

 Appendix C. History of changes 72

https://www.xmlmind.com/xmleditor/
https://en.wikipedia.org/wiki/X_Window_selection
https://en.wikipedia.org/wiki/X_Window_selection
https://www.xmlmind.com/xmleditor/
https://www.xmlmind.com/xmleditor/
https://www.eclipse.org/jetty/

 XMLmind XML Editor Web Edition - Manual

v1.0.0-beta2 (May 29, 2023)

xxeserver based on XMLmind XML Editor v10.4.1 (not publicly released).

Enhancements:

• Added an autosave facility to the sample XML editor application. Note that this autosave facility is
not enabled by default. See new attribute @autosave.

• Added "Show Element Reference" to the menu of the sample XML editor application.

• Added a "Comparison of revisions" information item to the tooltip of the document icon of the node
path bar (if this feature has been enabled for this document being edited).

• Firefox: slightly improved the clipboard integration. XXEW now updates the system clipboard when
needed to but, unlike Chrome, still cannot read its contents.

• The "Paste from Word Processor or Browser" add-on is now supported by XMLmind XML Editor
Web Edition (XXEW) and is included in all XXEW distributions. As a consequence, a new "Paste
from Word Processor or Browser" menu item has been added to the menu found at the bottom/
right of the DocBook, DITA Topic and XHTML toolbars.

Restriction

Please note that this add-on, when used by XXEW, is less good at importing data

copied by MS-Word to the clipboard than when used by the desktop application.

The add-on is strictly identical in both contexts and in theory, this should not

happen. However browsers tend to discard important style information before

making copied data available to web applications such as XXEW. For example, lists

and language information are not imported as accurately as they should be.

Bug fixes:

• The dialog box displayed by command "Command History" did not work correctly when
one of the repeatable commands had a parameter containing a newline character (example:
"textSearchReplace a[i]foo\nbar").

• Firefox: pressing Ctrl-SPACE to insert a non-breaking space character (or U+00A0) also
inserted a space character.

• In some cases, the width of "display:marker" content generated before an element was not
computed accurately enough.

v1.0.0-beta1 (May 1, 2023)

First public release. xxeserver based on XMLmind XML Editor v10.4.0.

 Appendix C. History of changes 73

https://www.xmlmind.com/xmleditor/
https://www.xmlmind.com/xmleditor/

 XMLmind XML Editor Web Edition - Manual

Index
A
addEventListener, XMLEditor API, 24, 28
autoconnect, xxe-client attribute, 46
autoRecover, XMLEditor API, 28, 28
autorecover, xxe-app attribute, 43
autorecover, xxe-client attribute, 46
autosave, xxe-app attribute, 43

B
button2pastestext, xxe-app attribute, 44
button2pastestext, xxe-client attribute, 46

C
-certalias, xxeserver option, 36
checkleaveapp, xxe-app attribute, 44
clientproperties, xxe-app attribute, 44
clientproperties, xxe-client attribute, 46
closeDocument, XMLEditor API, 24, 31

D
-delpref, xxeserver option, 35, 41
documentIsOpened, XMLEditor API, 24, 29
documentstorage, xxe-app attribute, 44
documentUID, XMLEditor API, 24
documentURI, XMLEditor API, 24

F
-faccess, xxeserver option, 37

G
getDocument, XMLEditor API, 24, 30

I
-index, xxeserver option, 35

K
-keypass, xxeserver option, 36
-keystore, xxeserver option, 36

L
label, remote file root property, 38
loadResource, XMLEditor API, 32
-loglevel, xxeserver option, 37
-logrequests, xxeserver option, 37
-logserve, xxeserver option, 37

M
-maxeditors, xxeserver option, 37

N
newDocumentFromTemplate, XMLEditor
API, 23

O
openDocument, XMLEditor API, 23, 29
openResource, XMLEditor API, 32

P
password, remote file root property, 39
-pid, xxeserver option, 37
-port, xxeserver option, 35
prompt, remote file root property, 38
-putpref, xxeserver option, 35, 41
-putprefs, xxeserver option, 35, 41

R
readonly, remote file root property, 38
-recoverdocgracetime, xxeserver option, 37
Resource, XMLEditor API, 33
resourceStorage, XMLEditor API, 32
ResourceStorage, XMLEditor API, 32

S
saveAsNeeded, XMLEditor API, 23
saveDocument, XMLEditor API, 24, 30
saveDocumentAs, XMLEditor API, 24
saveNeeded, XMLEditor API, 24, 29
SaveStateChangedEvent, XMLEditor API, 24
scheme, remote file root property, 38
-selfsign, xxeserver option, 36
serverurl, xxe-app attribute, 44
serverurl, xxe-client attribute, 47
stop, Java command, 63
-storepass, xxeserver option, 36
storeResource, XMLEditor API, 32
-storetype, xxeserver option, 36

U
uri, remote file root property, 38
username, remote file root property, 39

 i

	Table of Contents
	Part I. What is XMLmind XML Editor Web Edition?
	Chapter 1. Presentation
	Chapter 2. How it works

	Part II. Deploying XMLmind XML Editor Web Edition
	Chapter 3. Installing XMLmind XML Editor Web Edition
	Chapter 4. A quick demo on a single computer
	Chapter 5. Deploying the sample XML editor
	Section 1. Starting xxeserver on Linux or on macOS
	Section 2. Starting xxeserver on Windows

	Chapter 6. Integrating an XML editor into your web application
	Section 1. Overview
	Section 2. Sample web application integrating an XML editor
	Section 2.1. Document resources

	Chapter 7. xxeserver command-line options
	Section 1. User preferences

	Chapter 8. The xxe-app custom HTML element
	Chapter 9. The xxe-client custom HTML element

	Part III. Using XMLmind XML Editor Web Edition
	Chapter 10. The basics
	Chapter 11. Being productive

	Appendix A. How to adapt an existing ".xxe" configuration file to XXEW
	Appendix B. Troubleshooting
	Appendix C. History of changes
	Index

