	
	
	

	
	XSL-FO extension for Office Open XML
	

	
	XSL-FO extension for Office Open XML
	

XMLmind XSL-FO Converter - User's Guide
Jean-Yves Belmonte
Hussein Shafie
XMLmind Software
<xfc-support@xmlmind.com>
XMLmind XSL-FO Converter - User's Guide
Jean-Yves Belmonte
Hussein Shafie
XMLmind Software
<xfc-support@xmlmind.com>
Publication date December 27, 2024
Abstract
This guide describes how to install the XMLmind XSL-FO Converter engine and use its command-line executables. It also explains how to integrate this software component into your application.
	
	
	

	
	
	

	
	
	

	
	
	

Table of Contents
1. Introduction	0
2. Installing XMLmind XSL-FO Converter	0
1. System requirements	0
2. Installation	0
3. Contents of the installation directory	0
3. Command-line executables	0
4. Integrating XMLmind XSL-FO Converter into your application	0
1. Compiling and running the code samples	0
2. Converting an XSL-FO file to RTF	0
3. Converting an XML document to RTF	0
4. Implementing a custom IGraphicFactory and registering it with XMLmind XSL-FO Converter	0
5. Support of the XSL-FO v1.0 standard	0
1. Features	0
2. Limitations	0
3. Conformance statement	0
4. Implementation specificities	0
4.1. Page references	0
4.1.1. RTF/WML/OOXML	0
4.1.2. OpenDocument	0
4.2. Lists	0
4.2.1. The xfc:label-format extension attribute	0
4.3. Leaders	0
4.4. Other extension attributes	0
4.4.1. The xfc:outline-level extension attribute	0
4.4.2. The xfc:render-as-table extension attribute	0
4.5. Special uses of fo:block-container	0
4.5.1. Using fo:block-container to temporarily switch the page orientation from portrait to landscape	0
4.5.2. Using fo:block-container to rotate the content of a table cell	0
4.6. Adding language information to the documents created by XFC	0
4.7. Adding metadata to the documents created by XFC	0
4.7.1. Standard metadata	0
4.7.2. Custom metadata	0
4.8. Restricting editing in the documents created by XFC	0
4.9. Special characters	0
4.10. Special support for East Asian fonts	0
4.11. Multiple page layouts	0
4.12. Adding a watermark to the generated document	0
4.13. Expressions	0
4.14. Non-standard extension of XSL-FO property text-decoration	0
6. XSL-FO extension for generating named styles	0
1. Why generate named styles?	0
2. How it works	0
2.1. Putting named styles to work	0
2.2. The effect of the xfc:user-style extension attribute on an XSL-FO element	0
3. Style reference	0
3.1. The styles element	0
3.2. The text-style element	0
3.3. The paragraph-style element	0
3.4. The numbering element	0
3.5. The xfc:user-style extension attribute	0
3.6. The xfc:restart-numbering extension attribute	0
4. A comprehensive example	0
5. Adding named styles support to an existing XSLT stylesheet	0
6. Troubleshooting	0
7. XSL-FO extension for Office Open XML	0
1. Introductory example	0
2. How it works	0
2.1. Text field example	0
2.2. Drop-down list example	0
2.3. Specifying a Custom XML Data template	0
2.4. Extracting the Custom XML Data part	0
3. Reference Material	0
3.1. Generic attributes	0
3.2. sdt:text-field	0
3.3. sdt:drop-down-list	0
3.4. sdt:list-entry	0
3.5. sdt:combo-box	0
3.6. sdt:date	0
3.7. sdt:picture	0
3.8. sdt:image-data	0
3.9. sdt:configuration	0
	
	
	

	
	XMLmind XSL-FO Converter - User's Guide
	

	
	XMLmind XSL-FO Converter - User's Guide
	

	
	
	

	
	
	

	
	
	

List of Figures
6.1. The style editor of MS-Word 2007	0
7.1. Text field (initial display)	0
7.2. Text field (selected)	0
7.3. Text field (filled)	0
7.4. Drop-down list (initial display)	0
7.5. Drop-down list (selecting an entry)	0
7.6. Text field	0
7.7. Drop-down list	0
7.8. Date	0
7.9. Picture	0
	
	
	

	
	XMLmind XSL-FO Converter - User's Guide
	

	
	XMLmind XSL-FO Converter - User's Guide
	

	
	
	

	
	
	

	
	
	

List of Tables
5.1. XSL-FO objects	0
5.2. XSL-FO properties	0
5.3. Standard metadata	0
5.4. Standard metadata supported by the DOCX output format	0
5.5. Standard metadata supported by the WML output format	0
5.6. Standard metadata supported by the RTF output format	0
5.7. Standard metadata supported by the ODT output format	0
	
	
	

	
	XMLmind XSL-FO Converter - User's Guide
	

	
	XMLmind XSL-FO Converter - User's Guide
	

	
	
	

	
	
	

	
	
	

Chapter 1. Introduction
XMLmind XSL-FO Converter (XFC for short) is an XSL-FO processor similar to Apache FOP, RenderX XEP or Antenna House XSL Formatter. Unlike the aforementioned processors which all renders XSL-FO as PDF and PostScript®, XMLmind XSL-FO Converter converts XSL-FO v1.0 to the following formats:
· RTF (Word 2000+),
· WordprocessingML (Word 2003+),
· Office Open XML (.docx, Word 2007+),
· OpenOffice (.odt, OpenOffice/LibreOffice 2+).
That is, XMLmind XSL-FO Converter translates one format, XSL-FO v1.0, to the file formats of the two most commonly used word processors, Microsoft Word and OpenOffice.org Writer.
Working at a higher level than the other XSL-FO processors, XMLmind XSL-FO Converter has intrinsic limitations which are detailed in Section 2, “Limitations”. Despite these limitations, XMLmind XSL-FO Converter allows to process very elaborate XSL-FO files. In practice, you should be able to reuse as is the XSLT style sheets (which generate XSL-FO) that you have developed to convert your XML documents to PDF.

	About Evaluation Edition
Do not be surprised because XMLmind XSL-FO Converter Evaluation Edition generates output containing random duplicate letters. Of course, this does not happen with Professional Edition!

	Note
The target audience of this document is a developer or an integrator, that is, a technical person and not an end user. End users, that is persons who need to convert XML documents to a variety of formats, are more likely to use XMLmind XSL Utility, a handy graphical tool, which is available in a separate, self-contained, distribution.

	
	
	

	
	Introduction
	

	
	Introduction
	

	
	
	

	
	
	

	
	
	

Chapter 2. Installing XMLmind XSL-FO Converter
1. System requirements
A .NET Framework 4.0+ is required to run the XMLmind XSL-FO Converter engine, .NET Edition. Mono 5.1+ is also supported on Linux.
XMLmind XSL-FO Converter is officially supported on Windows 7/8/10/11 (32-bit or 64-bit) and thanks to Mono, also on Linux.
2. Installation
Simply unzip the distribution somewhere. Example:
C:\> unzip temp\xfc_pro_dotnet-6_5_0.zip
C:\> dir xfc_pro_dotnet-6_5_0
...
bin <DIR> ...
doc <DIR> ...
legal <DIR> ...
samples <DIR> ...
This means that uninstalling XMLmind XSL-FO Converter simply consists in deleting the directory created by unzipping its distribution.
3. Contents of the installation directory
bin/fo2rtf.exe, fo2wml.exe, fo2docx.exe, fo2odt.exe
Executable files used to run XMLmind XSL-FO Converter (XFC for short).
bin/xfc.dll
The .NET 4.0 assembly containing the XMLmind XSL-FO Converter engine. Reference it in your project if you are integrating XMLmind XSL-FO Converter in your application.
bin/IKVM*.dll
The IKVM.NET runtime needed by xfc.dll.
bin/gac_install_all.bat, gac_uninstall_all.bat
Simples scripts allowing to install all the above DLLs in the Global Assembly Cache (GAC). Script gac_uninstall_all.bat may be used to uninstall all the DLLs installed using gac_install_all.bat.
doc/index.html
Points to copies of this document in HTML, PDF, RTF, WordprocessingML, Office Open XML and OpenOffice formats.
Also points to the reference manual of the API of XMLmind XSL-FO Converter.
legal.txt, legal/
Contains legal information about XFC and about third-party components used in XFC.
samples/
A few XSL-FO sample files, in case you want to test the installation of XMLmind XSL-FO Converter by running samples/make_samples.bat.
	
	
	

	
	Installing XMLmind XSL-FO Converter
	

	
	Installing XMLmind XSL-FO Converter
	

	
	
	

	
	
	

	
	
	

Chapter 3. Command-line executables

	About Evaluation Edition
Do not be surprised because XMLmind XSL-FO Converter Evaluation Edition generates output containing random duplicate letters. Of course, this does not happen with Professional Edition!

Four command-line executables are provided: fo2rtf, fo2wml, fo2docx and fo2odt, to convert an XSL-FO file to RTF, WML, Open XML (.docx) and OpenDocument (.odt) respectively. The general syntax of a command line is:
fo2rtf [<options>] <input> [<output>]
where <input> is the input XSL-FO file name and <output> the output file name. If no output file is specified the conversion output is written to the standard output stream. Available options are described below.
Commonly used options:
/eencoding
Specifies the output encoding. Supported values depend on the target output format:
· For RTF output, supported encodings are US-ASCII, windows-1250 (Windows Eastern European), windows-1251 (Windows Cyrillic) and windows-1252 (Windows Latin-1). The default value is windows-1252.
· For WML output, all the encodings available in the runtime are supported. The default value is windows-1252 (Windows Latin-1).
· For Open XML output (.docx), supported encodings are UTF-8 and UTF-16. The default value is UTF-8.
· For OpenDocument output (.odt), all the encodings available in the runtime are supported. The default value is UTF-8.
/rDPI
Default image resolution in DPI. A positive integer. Used to compute the intrinsic size of an image, but only when an image file does not contain resolution or absolute size information.
Default value: 96.
/pi
Prescale images to minimize output document size. By default, the original size of images is preserved and scaling directives are inserted in the output document.
Note that:
· This option will never create an image which has larger dimensions than the original image. It can only create an image which has smaller dimensions than the original image.
· The /pi option is honored only for true raster graphics. Vector graphics (WMF, EMF) are never prescaled. Pre-rasterized vector graphics (SVG, MathML) are always prescaled (by the competent renderer, e.g. Batik or JEuclid, not by XMLmind XSL-FO Converter itself).
/fmap
May be used to map the generic font families serif, sans-serif, monospace, fantasy and cursive to actual font families.
Syntax:
map -> entry [',' entry]*

entry -> generic_family '=' actual_family

generic_family -> 'serif' | 'sans-serif' | 'monospace'
 | 'cursive' | 'fantasy'
Example: /f "fantasy=Impact,cursive=Comic Sans MS".
The default mapping depends on the output format: the generic font families serif, sans-serif, monospace are mapped to "Times New Roman", Arial, "Courier New" for RTF, WML and Open XML (.docx) and to "DejaVu Serif", "DejaVu Sans", "DejaVu Sans Mono" for OpenDocument (.odt).
Note that by default, generic font families fantasy and cursive are not mapped.
/s
Specifies single-sided page layout. By default RTF, WML and Open XML (.docx) output documents are given a double-sided page layout regardless of the input document properties. This option may be used to force a single-sided page layout.
/styURL_or_filename
Specifies the location of an XML file containing the set of user styles to be used during the conversion. More information about user styles in Chapter 6, XSL-FO extension for generating named styles.
This location is an URL in its string form (e.g. "file:///C:/My%20Folder/styles.xfc") or a filename (e.g. "C:\My Folder\styles.xfc"). A relative filename is relative to the current working directory.
The XML file must conform to the styles.xsd schema.
By default, XMLmind XSL-FO Converter generates only direct formatting (RTF, WordprocessingML, .docx) or automatic styles (.odt).
Rarely used options:
/eafmap
May be used to map East Asian font families to Western font families. Such East Asian fonts are used to render mainly CJK (Chinese Japanese Korean) text, possibly mixed with Western text. More information in Section 4.10, “Special support for East Asian fonts”.
Syntax:
map -> entry [',' entry]*

entry -> east_asian_family '=' western_family
Example: /eaf "MS UI Gothic=Times New Roman,Meiryo=Calibri".
For compatibility with previous versions of XMLmind XSL-FO Converter, the default value of this property is "Arial Unicode MS=Arial".

	Important
This property is supported by the ODT, WML and DOCX output formats, but not by the RTF output format.

/l
List supported encodings.
/rrDPI
Default image resolution in DPI. A positive integer. Used to compute the intrinsic size of an image, according to the image renderer (that is, MS-Word or OpenOffice), when an image file does not contain resolution or absolute size information.
The default value depends on the output format. Generally 96. It is strongly recommended to use this default value.
/srDPI
Screen resolution in DPI. A positive integer. Used to convert px lengths to other units (in, mm, cm, pt, etc).
Default value: 96.
/bURL
Specifies the base URL of relative paths in attribute values (typically the src attribute of the external-graphic element). By default, paths are taken relative to the input source URL.
/w
Specifies MS-Word as target RTF viewer. This option may be needed to circumvent an obscure bug in the RTF loader of MS-Word, which does not handle table cell padding tags correctly. When this option is used, XFC will swap top and left padding values in table cells to work around this bug.
/vml
Specifies that images contained in Office Open XML (.docx) files must be represented using the deprecated VML markup rather than the DrawingML markup.
By default, images contained in Office Open XML (.docx) files are represented using DrawingML markup.
/variant MS-Word_major_version [strict]?
Examples: /variant 14, /variant 15, /variant 15strict.
Marks generated DOCX file as being compatible with MS-Word having specified major version. Any major version other than 14 (MS-Word 2010), 15 (MS-Word 2013), 16 (MS-Word 2016) is currently ignored.
Moreover suffix "strict" (supported only when MS-Word_major_version >= 15) may be used to generate DOCX files marked as being "Strict Open XML".
Default: None. The generated DOCX files are not marked as being compatible with a specific version of MS-Word.

	Tip
Specifying /variant 15 suppresses the "[Compatibility Mode]" text appearing in the title bar of MS-Word 2013 and 2016.

	Note
Specifying /variant 15 does not prevent the generated DOCX file from being opened in MS-Word 2007 and 2010. However specifying /variant 15strict generates "Strict Open XML" files which are not supported by MS-Word 2007 and 2010.

/png
Specifies that input JPEG images must be converted to PNG in the output file.
/nolist
Do not attempt to create proper lists by inferring the numbering style of the list from the label of its first item. (By default, XFC attempts to create proper lists by inferring he numbering style of the list from the label of its first item.)
Note that even when this option is used, it's still possible to instruct XFC to create proper lists by specifying extension attribute xfc:label-format in the XSL-FO input file.
/metametadata_namemetadata_value
Specifies a metadata to be added to the document information section of the generated document. More information in Section 4.7, “Adding metadata to the documents created by XFC”.
Examples: "/meta lastModifiedBy john@acme.com", "/meta xfc:final true".
/protrestrictions
Specifies how the generated document is to be restricted in terms of editing and/or formatting. Restrictions syntax is:
'unrestricted' | 'limited-formatting' |
('read-only'|'comments-only'|'fill-forms-only'|'tracked-changes-only'
 ['+limited-formatting']?)
Examples: "/prot comments-only", "/prot limited-formatting", "/prot tracked-changes-only+limited-formatting".
Use "" or "unrestricted" to discard any existing edit restriction. More information in Section 4.8, “Restricting editing in the documents created by XFC”.
/passwordpassword
This clear text password lets the user of the word processor remove the edit restrictions. By default, the document protection is not enforced using a password.
Use "" to discard any existing password. More information in Section 4.8, “Restricting editing in the documents created by XFC”.
	
	
	

	
	Command-line executables
	

	
	Command-line executables
	

	
	
	

	
	
	

	
	
	

Chapter 4. Integrating XMLmind XSL-FO Converter into your application
1. Compiling and running the code samples
All the code samples used to illustrate this document are found in the samples/dotnet/ subdirectory.
· Compile the three samples by executing nmake in the samples/dotnet/ directory.

	Note
If you are using Mono on Linux rather a Microsoft .NET framework on Windows, please run make -f mono.mak and not nmake.

· Run the first sample by executing nmake tsample1 in the samples/dotnet/ directory.
· Run the second sample by executing nmake tsample2 in the samples/dotnet/ directory.
· Run the third sample by executing nmake icographic in the samples/dotnet/ directory.
2. Converting an XSL-FO file to RTF
This first sample consists in a single step: invoke XMLmind XSL-FO Converter to convert the input XSL-FO file to RTF.
Note that converting XSL-FO to other formats is simply a matter of changing the value of the OutputFormat property. The possible values for this property are: OutputFormat.Rtf, OutputFormat.Wml, OutputFormat.Docx, OutputFormat.Odt.
Excerpts of samples/dotnet/Sample1.cs:
using XmlMind.FoConverter;

...
 Converter converter = new Converter();[image:]
 converter.OutputFormat = OutputFormat.Rtf;[image:]
 converter.OutputEncoding = "windows-1252";
 converter.ImageResolution = 120;

 String inUri = ToUri(inPath);
 converter.SetInput(inUri);[image:]
 converter.SetOutput(outPath);[image:]
 converter.Convert();[image:]
...
[image:]	Create a new Converter object.
[image:]	Parameterize the Converter using some of its properties.
Note that specifying property OutputEncoding is really useful only in the case of the RTF format. All the other formats are XML-based and thus, the default value of OutputEncoding, generally UTF-8, should work fine in all cases.
[image:]	Specify the input source of the Converter using Converter.SetInput.
Here we use the most high-level specification: we specify a (%-escaped) URI. In production, you'll generally specify a Stream, TextReader or XMLReader. Note that when you'll specify a Stream, TextReader or XMLReader, the Converter will not automatically close it at the end of the conversion. You'll have to do that yourself. The rule here is: the code which has opened a Stream, TextReader or XMLReader has the responsibility to close it.

	Note
ToURI is a simple helper function implemented as follows:
private static string ToUri(String fileName)
{
 Uri uri = new Uri(Path.GetFullPath(fileName));
 return uri.AbsoluteUri;
}

[image:]	Specify the output destination of the Converter using Converter.SetOutput.
Here we use the most high-level specification: we specify a file path. In production, you'll generally specify a Stream or a TextWriter. As explained before, when you'll specify a Stream or a TextWriter, the Converter will not automatically close it at the end of the conversion.
[image:]	Perform the conversion by invoking Converter.Convert.
3. Converting an XML document to RTF
This second sample consists in three steps:
1. Compile the XSLT style sheet for all subsequent uses.
2. Invoke the XSLT engine to convert the input XML document to XSL-FO.
3. Invoke XMLmind XSL-FO Converter to convert the temporary XSL-FO file generated by second step to RTF.
Excerpts of samples/dotnet/Sample2.cs:
using System.Xml.Xsl;
using XmlMind.FoConverter;

...
 XslCompiledTransform transform = new XslCompiledTransform();
 transform.Load(ToUri(xslPath));[image:]

 string xmlUri = ToUri(xmlPath);
 foPath = Path.GetTempFileName();
 transform.Transform(xmlUri, foPath);[image:]

 Converter converter = new Converter();[image:]
 converter.OutputFormat = OutputFormat.Rtf;
 converter.OutputEncoding = "windows-1252";
 converter.ImageResolution = 72;
 converter.BaseUrl = xmlUri;[image:]

 converter.SetInput(ToUri(foPath));
 converter.SetOutput(rtfPath);
 converter.Convert();[image:]
...
[image:]	Compile the XSLT style sheet.

	About the thread safety of XMLmind XSL-FO Converter
A Converter instance must not be shared between different threads.

[image:]	Transform the XML input file to a temporary output file created in the system-dependant temporary file directory.
[image:]	Create and parameterize a Converter object as explained in Section 2, “Converting an XSL-FO file to RTF”.
[image:]	Setting the BaseUrl property to the URL of the XML input file is really needed in our case:
If the XML input file references graphics files using relative URLs (example: images/screenshot1.png), then the generated XSL-FO file is likely to contain fo:external-graphic objects referencing the same graphics files using the same relative URLs. The problem is that, in our case, the XSL-FO file is not generated in the same directory as the XML input file. Therefore, without the BaseUrl property, these relative URLs would be resolved incorrectly by XMLmind XSL-FO Converter.
An advanced alternative to specifying a BaseUrl property, is to specify an IUriResolver object using Converter.SetUriResolver.
[image:]	Perform the conversion by invoking Converter.Convert.
4. Implementing a custom IGraphicFactory and registering it with XMLmind XSL-FO Converter
We'll use the support of .ico files — Windows native icons — as an example of extending the graphic capabilities of XMLmind XSL-FO Converter.
Implementing a IGraphicFactory is straightforward. You just need to implement 4 methods: GetInputFormats, GetOutputFormats, CreateGraphic and ConvertGraphic.
Excerpts of samples/dotnet/IcoGraphicFactory.cs:
...
using XmlMind.FoConverter;

public class IcoGraphicFactory : IGraphicFactory
{
 private static readonly string[] inputFormats = {
 "image/vnd.microsoft.icon"
 };
 private static readonly string[] outputFormats = {
 "image/png"
 };

 public string[] GetInputFormats()[image:]
 {
 return inputFormats;
 }

 public string[] GetOutputFormats()[image:]
 {
 return outputFormats;
 }
 ...
[image:]	GetInputFormats returns the list of the media types (AKA MIME types) that the IGraphicFactory can read.
[image:]	GetOutputFormats returns the list of the media types that the IGraphicFactory can write. In order to be useful to XMLmind XSL-FO Converter, a factory must return one or more of "image/png", "image/x-wmf", "image/x-emf".
 ...
 public IGraphic CreateGraphic(string location, string format,
 object clientData, IGraphicEnv env)[image:]
 {
 Image image = LoadImage(location);

 double xRes = 0;
 double yRes = 0;
 if ((image.Flags & ((int) ImageFlags.HasRealDpi)) != 0) {
 xRes = image.HorizontalResolution;
 yRes = image.VerticalResolution;
 }

 return new Graphic(location, format, image.Width, image.Height,
 xRes, yRes, GraphicType.Raster, clientData);[image:]
 }

 private static Image LoadImage(String location) {
 Image image = null;

 Stream stream = GraphicUtil.OpenStream(location);[image:]
 try {
 image = Image.FromStream(stream);
 } finally {
 stream.Close();
 }

 return image;
 }
 ...
[image:]	Method CreateGraphic basically needs to parse the image file found at absolute URI location and having format as its media type. This method then returns an implementation of interface IGraphic which represents the parsed image file.
Note that argument format is guaranteed to be one the media types listed by GetInputFormats.
[image:]	Class Graphic is a simple implementation of interface IGraphic.
[image:]	In order to obtain the dimension of the image (width and height in pixels and possibly xResolution and yResolution in DPI), we have chosen in this simple example to fully load the image into memory. To do that, we use the GraphicUtil.OpenStream helper function. This helper not only supports ``normal URIs'' (that is, starting with "file:", "http:", etc) but also "data:" URIs.
 ...
 public IGraphic ConvertGraphic(IGraphic graphic, string format,
 double xScale, double yScale,
 object clientData, IGraphicEnv env)[image:]
 {
 int width = graphic.GetWidth();
 int height = graphic.GetHeight();

 double xRes = graphic.GetXResolution();
 double yRes = graphic.GetYResolution();

 Image image = LoadImage(graphic.GetLocation());

 if (xScale != 1) {
 width = (int) Math.Round(width * xScale);
 }
 if (yScale != 1) {
 height = (int) Math.Round(height * yScale);
 }

 Bitmap bitmap = new Bitmap(image, width, height);

 if (xRes > 0 && yRes > 0) {
 bitmap.SetResolution((float) xRes, (float) yRes);
 }

 string outPath = env.CreateTempFile(".png");[image:]
 bitmap.Save(outPath, ImageFormat.Png);

 return new Graphic(GraphicUtil.FilenameToLocation(outPath), format,[image:]
 width, height, xRes, yRes,
 GraphicType.Raster, clientData);
 }
 ...
[image:]	Method ConvertGraphic is invoked to convert its graphic argument (previously created using CreateGraphic) to the format media type. This method then returns an implementation of interface IGraphic which represents the converted image file.
Note that argument format is guaranteed to be one the media types listed by GetOutputFormats.
[image:]	The converted image file must be stored in a temporary file created using method IGraphicEnv.CreateTempFile. Such temporary files are automatically deleted when no longer needed.
[image:]	Class GraphicUtil contains several useful helper functions, among them FilenameToLocation which converts a filename to a "file:" URI.
 public static int Main(string[] args)
 {
 ...
 GraphicFactories.Register(new IcoGraphicFactory());[image:]
 ...
 converter.SetInput(inUri);
 converter.SetOutput(outPath);
 converter.Convert();
 ...
[image:]	For an implementation of IGraphicFactory to be used by XMLmind XSL-FO Converter, this class must be registered using GraphicFactories.Register. In this simple example, we do that in the Main method, prior to invoking Converter.Convert.
	
	
	

	
	Integrating XMLmind XSL-FO Converter into your application
	

	
	Integrating XMLmind XSL-FO Converter into your application
	

	
	
	

	
	
	

	
	
	

Chapter 5. Support of the XSL-FO v1.0 standard
1. Features
XFC preserves the structure of source documents, as well as most of the presentation information. Below is a list of key features of XFC.
· Paragraph attributes
Most paragraph attributes (e.g. indentation) are supported. Vertical spacing is handled reasonably in most cases.
· Font attributes
Most font attributes (family, size, weight, etc) are supported.

	About the font-family property
When the font-family property contains a list of several font families, it's always the first font family which is used by XFC. Example: font-family= "'FF Trixie', 'Andale Mono',monospace", the font used by XFC is "FF Trixie" (a very uncommon font indeed).
What happens when this font family is absent from the platform where the file generated by XFC is used? The answer is: the word processor will automatically substitute another font for it. However for this font substitution to work well, the font family being referenced in the generated file must have been properly declared.
XFC uses the generic font family name (serif, sans-serif, monospace, fantasy, cursive) possibly found in the list to properly declare the font being used.
In the above example, the font used by XFC is "FF Trixie" and because the list contains monospace, "FF Trixie" is declared to be a “modern” font having a fixed pitch.
Note that when the font-family property does not contain any generic font family name, XFC will nevertheless try to properly declare the font being used. It does so by searching its own internal set of known fonts for the font being used. For example, XFC knows that "Andale Mono" is equivalent to a monospace font and as such, it will declare it as being a “modern” font having a fixed pitch.

· Lists
XFC automatically tries to infer the numbering style from the label of the first list item. Both bulleted and numbered lists are supported. Nested lists are supported.
When the heuristics used by XFC are insufficient to infer the type of a list, it's still possible to explicitly specify this type by adding an xfc:label-format proprietary attribute to the fo:list-block.
When the heuristics used by XFC are insufficient to infer the type of a list and the xfc:label-format attribute is absent from the fo:list-block, then list items are output as plain paragraphs. That is, the list items look as expected, but will not behave as proper list items when edited in MS-Word or OpenOffice.org.
· Tables
XFC supports both the fixed and automatic table layout, as well as the two border models defined in the W3C recommendation. The implementation of the collapsing border model does not strictly conforms to the CSS2 specification, but should give the expected result in most cases.
· Images
Out of the box, XFC supports WMF, EMF, BMP (only .NET version and Java™ 1.5+), TIFF (only .NET version and Java™ with jai_imageio.jar in the CLASSPATH), GIF, JPEG and PNG graphics.
Implementing the public, documented, Graphic and GraphicFactory interfaces (IGraphic and IGraphicFactory for the .NET version) allows third-party programmers to add support for even more graphic formats.
· Embedded foreign XML
The XML content of a fo:instream-foreign-object element is now passed to the proper GraphicFactory. For this to work, the fo:instream-foreign-object element must have a content-type attribute containing a media type supported by a registered GraphicFactory.
Note that content-type ``sniffing'' is implemented only for SVG and MathML and that content-type attributes starting with "namespace-prefix:" are completely ignored.
· Headers and footers
static-content elements associated with the before and after regions are converted to page headers and footers respectively.
· Page references
Page references (page-number-citation elements) are supported.
· Hypertext links
Both internal and external links are supported.
For a complete list of supported objects/properties, see the conformance statement.
In addition, XFC supports an number of proprietary and yet very useful, extensions to the XSL-FO standard:
· The aforementioned xfc:label-format extension attribute.
· Extensions attributes allowing to control the rendering of fo:leader.
· The xfc:outline-level extension attribute.
· An XSL-FO extension for generating Structured Document Tags (SDT) in Office Open XML (.docx) documents. This extension makes it possible producing simple forms which can be loaded and filled in MS-Word 2007+.
· Last but not least, an XSL-FO extension for generating named styles. Using the xfc:user-style extension attribute, it becomes possible to generate RTF, WordprocessingML, Office Open XML (.docx) and OpenOffice (.odt) files where most of the text formatting is achieved using named paragraph styles ("Normal", "Heading 1", "Heading 2", etc) and named character styles ("Strong", "Emphasis", etc).
2. Limitations
Though XFC implements the greater part of the W3C recommendation, it does not support all XSL-FO features. Below is a list of the current major limitations of XFC.
· The leader element is only partly supported.
· The float and marker elements are not supported.
· The writing-mode property is not supported (value lr-tb is assumed).
The conformance level of XFC may be improved in future versions, however it must be stressed that a full conformance cannot be achieved due to the own limitations of its output formats.
3. Conformance statement
The W3C Extensible Stylesheet Language (XSL) v1.0 Recommendation defines three levels of conformance for an XSL-FO processor: basic, extended and complete. Since XMLmind XSL-FO Converter currently does not conform to any of these levels, this document provides a complete list of supported objects/properties, along with additional information for objects/properties that are not fully supported.
In the following tables, the background color (white, light green or green) of each entry in the tables below indicates the level of conformance (basic, extended or complete) of that particular object/property, as specified by the Recommendation.
Table 5.1. XSL-FO objects

	Object
	Supported
	Comments

	Declarations and Pagination and Layout Formatting Objects
	
	

	root
	yes
	

	declarations
	no
	

	color-profile
	no
	

	page-sequence
	yes
	

	layout-master-set
	yes
	

	page-sequence-master
	yes
	

	single-page-master-reference
	yes
	

	repeatable-page-master-reference
	yes
	

	repeatable-page-master-alternatives
	yes
	

	conditional-page-master-reference
	yes
	Limited support. See Section 4.11, “Multiple page layouts” for further information.

	simple-page-master
	yes
	

	region-body
	yes
	

	region-before
	yes
	

	region-after
	yes
	

	region-start
	no
	Output format limitation.

	region-end
	no
	Output format limitation.

	flow
	yes
	

	static-content
	yes
	Supported regions: body, before and after.

	title
	no
	

	Block-level Formatting Objects
	
	

	block
	yes
	Not supported inside inline-level objects (output format limitation).

	block-container
	limited
	May be used with attribute reference-orientation to temporarily switch the page orientation from portrait to landscape or to rotate the content of a table-cell. Otherwise, ignored.

	Inline-level Formatting Objects
	
	

	bidi-override
	no
	

	character
	no
	

	initial-property-set
	no
	

	external-graphic
	yes
	Supported image formats: WMF, EMF, BMP (.NET version and Java™ 1.5+), TIFF (.NET version and Java™ with jai_imageio.jar in the CLASSPATH) GIF, JPEG and PNG.
Optionally the Java™ (v1.5+) version also supports SVG and MathML.

	instream-foreign-object
	yes
	The XML content of a fo:instream-foreign-object element is passed to the proper GraphicFactory. For this to work, the fo:instream-foreign-object element must have a content-type attribute containing a media type supported by a registered GraphicFactory.
Note that content-type ``sniffing'' is implemented only for SVG and MathML and that content-type attributes starting with "namespace-prefix:" are completely ignored.

	inline
	yes
	Cannot contain block-level objects (output format limitation).

	inline-container
	no
	

	leader
	yes
	Limited support (most properties ignored). See Section 4.3, “Leaders” for further information.

	page-number
	yes
	

	page-number-citation
	yes
	

	Formatting Objects for Tables
	
	

	table-and-caption
	yes
	Not supported inside inline-level objects (output format limitation).

	table
	yes
	

	table-column
	yes
	

	table-caption
	yes
	

	table-header
	yes
	

	table-footer
	yes
	

	table-body
	yes
	

	table-row
	yes
	

	table-cell
	yes
	

	Formatting Objects for Lists
	
	

	list-block
	yes
	Not supported inside inline-level objects (output format limitation).

	list-item
	yes
	

	list-item-body
	yes
	

	list-item-label
	yes
	Multiple block-level descendants not supported.

	Link and Multi Formatting Objects
	
	

	basic-link
	yes
	Can only contain text and inline-level objects.

	multi-switch
	no
	

	multi-case
	no
	

	multi-toggle
	no
	

	multi-properties
	no
	

	multi-property-set
	no
	

	Out-of-line Formatting Objects
	
	

	float
	no
	

	footnote
	yes
	

	footnote-body
	yes
	

	Other Formatting Objects
	
	

	wrapper
	yes
	

	marker
	no
	

	retrieve-marker
	no
	

Table 5.2. XSL-FO properties

	Property
	Supported
	Comments

	Common Accessibility Properties
	
	

	source-document
	no
	

	role
	no
	Supported on fo:external-graphic and fo:instream-foreign-object.

	Common Absolute Position Properties
	
	

	absolute-position
	no
	

	top
	no
	

	right
	no
	

	bottom
	no
	

	top
	no
	

	Common Aural Properties
	
	

	azimuth
	n/a
	

	cue-after
	n/a
	

	cue-before
	n/a
	

	elevation
	n/a
	

	pause-after
	n/a
	

	pause-before
	n/a
	

	pitch
	n/a
	

	pitch-range
	n/a
	

	play-during
	n/a
	

	richness
	n/a
	

	speak
	n/a
	

	speak-header
	n/a
	

	speak-numeral
	n/a
	

	speak-punctuation
	n/a
	

	speech-rate
	n/a
	

	stress
	n/a
	

	voice-family
	n/a
	

	volume
	n/a
	

	Common Border, Padding and Background Properties
	
	

	background-attachment
	no
	

	background-color
	yes
	

	background-image
	no
	May be used to add a watermark to the generated document. See Section 4.12, “Adding a watermark to the generated document”.

	background-repeat
	no
	

	background-position-horizontal
	no
	May be used to add a watermark to the generated document. See Section 4.12, “Adding a watermark to the generated document”.

	background-position-vertical
	no
	

	border-before-color
	yes
	· Not supported on block-level objects that contain other block-level objects (output format limitation).
· Not supported on inline objects that contain other objects (output format limitation).

	border-before-style
	yes
	

	border-before-width
	yes
	

	border-after-color
	yes
	

	border-after-style
	yes
	

	border-after-width
	yes
	

	border-start-color
	yes
	

	border-start-style
	yes
	

	border-start-width
	yes
	

	border-end-color
	yes
	

	border-end-style
	yes
	

	border-end-width
	yes
	

	border-top-color
	yes
	· Not supported on block-level objects that contain other block-level objects (output format limitation).
· Not supported on inline objects that contain other objects (output format limitation).
ODT output format: borders and padding around a text span are not supported by OpenOffice and by old versions (< v5) of LibreOffice.

	border-top-style
	yes
	

	border-top-width
	yes
	

	border-bottom-color
	yes
	

	border-bottom-style
	yes
	

	border-bottom-width
	yes
	

	border-left-color
	yes
	

	border-left-style
	yes
	

	border-left-width
	yes
	

	border-right-color
	yes
	

	border-right-style
	yes
	

	border-right-width
	yes
	

	padding-before
	yes
	· Not supported on block-level objects that contain other block-level objects (output format limitation).
· Not supported together with border-*-style="none" or border-*-style="hidden" (output format limitation).

	padding-after
	yes
	

	padding-start
	yes
	

	padding-end
	yes
	

	padding-top
	yes
	· Not supported on block-level objects that contain other block-level objects (output format limitation).
· Not supported together with border-*-style="none" or border-*-style="hidden" (output format limitation).

	padding-bottom
	yes
	

	padding-left
	yes
	

	padding-right
	yes
	

	Common Font Properties
	
	

	font-family
	yes
	

	font-selection-strategy
	no
	

	font-size
	yes
	

	font-stretch
	no
	

	font-size-adjust
	no
	

	font-style
	yes
	Value backslant not supported (output format limitation).

	font-variant
	yes
	

	font-weight
	yes
	

	Common Hyphenation Properties
	
	

	country
	yes
	See language below.

	language
	yes
	For attribute language and, optionally, attribute country (or equivalently, xml:lang) to be considered to generate information for use by the word processor, attribute language (or equivalently, xml:lang) must be specified at least on the fo:root element. More information in Section 4.6, “Adding language information to the documents created by XFC”.

	script
	no
	

	hyphenate
	no
	

	hyphenation-character
	no
	

	hyphenation-push-character-count
	no
	

	hyphenation-remain-character-count
	no
	

	Common Margin Properties - Block
	
	

	margin-top
	yes
	Percentages and value auto not supported.

	margin-bottom
	yes
	

	margin-left
	yes
	

	margin-right
	yes
	

	space-before
	yes
	Conditionality not supported.

	space-after
	yes
	

	start-indent
	yes
	Percentages not supported.

	end-indent
	yes
	

	Common Margin Properties - Inline
	
	

	space-end
	no
	

	space-start
	no
	

	Common Relative Position Properties
	
	

	relative-position
	no
	

	Area Alignment Properties
	
	

	alignment-adjust
	no
	

	alignment-baseline
	no
	Values middle, before-edge and after-edge supported on fo:external-graphic and fo:instream-foreign-object.

	baseline-shift
	yes
	

	display-align
	no
	Supported on fo:table-cell, fo:external-graphic and fo:instream-foreign-object.

	dominant-baseline
	no
	

	relative-align
	no
	

	Area Dimension Properties
	
	

	block-progression-dimension
	no
	

	content-height
	yes
	The following XSL-FO 1.1 property values: scale-down-to-fit, scale-up-to-fit are also supported.

	content-width
	yes
	The following XSL-FO 1.1 property values: scale-down-to-fit, scale-up-to-fit are also supported.

	height
	no
	Supported on fo:table-row, fo:external-graphic and fo:instream-foreign-object.

	inline-progression-dimension
	no
	

	max-height
	no
	

	max-width
	no
	

	min-height
	no
	

	min-width
	no
	

	scaling
	yes
	

	scaling-method
	no
	

	width
	no
	Supported on fo:table, fo:external-graphic and fo:instream-foreign-object.

	Block and Line-related Properties
	
	

	hyphenation-keep
	no
	

	hyphenation-ladder-count
	no
	

	last-line-end-indent
	no
	Output format limitation.

	line-height
	yes
	Value type space not supported.

	line-height-shift-adjustment
	no
	

	line-stacking-strategy
	no
	

	linefeed-treatment
	yes
	

	text-align
	yes
	Values inside and outside and value type string not supported.

	text-align-last
	no
	Output format limitation.

	text-indent
	yes
	Percentages not supported.

	white-space-collapse
	yes
	

	white-space-treatment
	yes
	

	wrap-option
	no
	

	Character Properties
	
	

	character
	no
	

	letter-spacing
	no
	

	suppress-at-line-break
	no
	

	text-decoration
	yes
	In addition to the decoration type (underline, overline, line-through, etc), it's possible to specify the color, style (solid, double, dotted, dashed, wavy) and thickness of the text decoration. See Section 4.14, “Non-standard extension of XSL-FO property text-decoration”.

	text-shadow
	no
	

	text-transform
	no
	

	treat-as-word-space
	no
	

	word-spacing
	no
	

	Color-related Properties
	
	

	color
	yes
	

	color-profile-name
	no
	

	rendering-intent
	no
	

	Float-related Properties
	
	

	clear
	no
	

	float
	no
	

	intrusion-displace
	no
	

	Keeps and Breaks Properties
	
	

	break-after
	yes
	

	break-before
	yes
	

	keep-together
	yes
	Not supported on block-level objects that contain other block-level objects.

	keep-with-next
	yes
	Not supported on block-level objects that contain other block-level objects.

	keep-with-previous
	no
	

	orphans
	yes
	Remember that Window/Orphan control is turned on by default as the initial value of the orphans and widows properties is 2.
Also note that for MS-Word, Window/Orphan control is an all or nothing option. Therefore if you set attribute orphans or attribute widows to 1, Window and Orphan control will be turned off. If, on the contrary, you set attribute orphans or attribute widows to any value greater or equal than 2, Window and Orphan control will be turned on.
Unlike MS-Word, OpenOffice/LibreOffice fully supports the orphans and widows properties.

	widows
	yes
	

	Layout-related Properties
	
	

	clip
	no
	

	overflow
	no
	

	reference-orientation
	limited
	May be used on fo:block-container to temporarily switch the page orientation from portrait to landscape or to rotate the content of a table-cell. Otherwise, ignored.

	span
	no
	

	Leader and Rule Properties
	
	

	leader-alignment
	no
	

	leader-pattern
	yes
	Value use-content not supported.

	leader-pattern-width
	no
	

	leader-length
	no
	

	rule-style
	yes
	Supported values: none, dotted and solid.

	rule-thickness
	no
	

	Properties for Dynamic Effects Formatting Objects
	
	

	active-state
	no
	

	auto-restore
	no
	

	case-name
	no
	

	case-title
	no
	

	destination-placement-offset
	no
	

	external-destination
	yes
	

	indicate-destination
	no
	

	internal-destination
	yes
	

	show-destination
	no
	

	starting-state
	no
	

	switch-to
	no
	

	target-presentation-context
	no
	

	target-processing-context
	no
	

	target-stylesheet
	no
	

	Properties for Markers
	
	

	marker-class-name
	no
	

	retrieve-class-name
	no
	

	retrieve-position
	no
	

	retrieve-boundary
	no
	

	Properties for Number to String Conversion
	
	

	format
	yes
	

	grouping-separator
	no
	

	grouping-size
	no
	

	letter-value
	no
	

	Pagination and Layout Properties
	
	

	blank-or-not-blank
	no
	

	column-count
	yes
	

	column-gap
	yes
	

	extent
	no
	

	flow-name
	yes
	Values xsl-before-float-separator and xsl-footnote-separator not supported.

	force-page-count
	no
	

	initial-page-number
	yes
	

	master-name
	yes
	

	master-reference
	yes
	

	maximum-repeats
	no
	

	media-usage
	no
	

	odd-or-even
	yes
	

	page-height
	yes
	

	page-position
	yes
	Value last not supported.

	page-width
	yes
	

	precedence
	no
	

	region-name
	yes
	

	Table Properties
	
	

	border-after-precedence
	no
	

	border-before-precedence
	no
	

	border-collapse
	yes
	Value collapse-with-precedence not supported.

	border-end-precedence
	no
	

	border-separation
	yes
	

	border-start-precedence
	no
	

	caption-side
	yes
	Values start, end, left and right not supported (output format limitation).

	column-number
	yes
	

	column-width
	yes
	

	empty-cells
	no
	

	ends-row
	yes
	

	number-columns-repeated
	yes
	

	number-columns-spanned
	yes
	

	number-rows-spanned
	yes
	

	starts-row
	yes
	

	table-layout
	yes
	

	table-omit-footer-at-break
	no
	

	table-omit-header-at-break
	no
	

	Writing-mode-related Properties
	
	

	direction
	no
	Value ltr assumed.

	glyph-orientation-horizontal
	no
	

	glyph-orientation-vertical
	no
	

	text-altitude
	no
	

	text-depth
	no
	

	unicode-bidi
	no
	

	writing-mode
	no
	Value lr-tb assumed.

	Miscellaneous Properties
	
	

	content-type
	yes
	

	id
	yes
	

	provisional-label-separation
	yes
	

	provisional-distance-between-starts
	yes
	

	ref-id
	yes
	

	score-spaces
	no
	

	src
	yes
	

	visibility
	no
	

	z-index
	no
	

	Shorthand Properties
	
	

	background
	no
	Background color specification supported.

	background-position
	no
	

	border
	yes
	See restrictions on individual properties.

	border-bottom
	yes
	

	border-left
	yes
	

	border-right
	yes
	

	border-top
	yes
	

	border-color
	yes
	

	border-style
	yes
	

	border-width
	yes
	

	border-spacing
	yes
	

	cue
	n/a
	

	font
	yes
	

	margin
	yes
	See restrictions on individual properties.

	padding
	yes
	See restrictions on individual properties.

	page-break-after
	yes
	See restrictions on individual properties.

	page-break-before
	yes
	

	page-break-inside
	yes
	

	pause
	n/a
	

	position
	no
	

	size
	no
	Value type length supported.

	vertical-align
	no
	

	white-space
	yes
	

	xml:lang
	yes
	Shorthand for language and country.

4. Implementation specificities
4.1. Page references
4.1.1. RTF/WML/OOXML
Page references - i.e. page-number-citation objects - are converted to PageRef fields. The values of these fields are not automatically updated when loading an RTF/WML/OOXML document in MS-Word. The easiest way to update all field values is to force a repagination of the document, for instance by switching to the "Page Layout" view (sometimes called "Print Layout").
If after doing that, some fields have not been updated, for example, those found in the Table of Contents and in the Index, please proceed as follows:
1. Switch to the "Page Layout" view (sometimes called "Print Layout").
2. Type Ctrl+A (Select all)
3. Press F9 (Update fields).
Note that there is no way to automate this. Unlike the XSL-FO processors which generate PDF (e.g. Apache FOP), a paginated format, XFC merely translates XSL-FO to the format internally used by a word processor (e.g. RTF, DOCX, ODT). Therefore XFC has no control whatsoever on page numbering. It's the word processor which, after loading the file generated by XFC, numbers the pages of the document.
4.1.2. OpenDocument
Page references - i.e. page-number-citation objects - are converted to reference fields. The values of these fields are not automatically updated when loading an OpenDocument file in OpenOffice. Select Update->Fields in the Tools menu to update the field values.
4.2. Lists
XFC automatically tries to infer the numbering style from the label of the first list item. Both bulleted and numbered lists are supported. Nested lists are supported.
When the heuristics used by XFC are insufficient to infer the type of a list, it's still possible to explicitly specify this type by adding an xfc:label-format extension attribute to the fo:list-block.
When the heuristics used by XFC are insufficient to infer the type of a list and the xfc:label-format attribute is absent from the fo:list-block, then the list items are output as plain paragraphs. That is, the list items look as expected, but will not behave as proper list items when edited in MS-Word or OpenOffice.org.
4.2.1. The xfc:label-format extension attribute
The xfc:label-format attribute must be specified on a fo:list-block.
The namespace of this attribute is "http://www.xmlmind.com/foconverter/xsl/extensions". A prefix, typically xfc, must be declared for this namespace.
The syntax of the value of this attribute is:
label-format -> [bullet | number]?

bullet -> String

number -> [String]? '%{' format '}' [String]

format -> 'decimal'|'lower-alpha'|'upper-alpha'|
 'lower-roman'|'upper-roman' [inherit]? [start]?

inherit -> ';inherit'

start -> ';start=' Positive_Integer
Description:
· An empty xfc:label-format attribute (e.g. xfc:label-format="") is allowed. It instructs XFC not to use any heuristic and to convert the fo:list-block to plain paragraphs.
· The '%' character must be escaped by doubling it. Example: %%%{decimal}, which corresponds to %1, %2, %3, etc.
· The format values decimal, lower-alpha, etc, correspond to the values of the CSS list-style-type property.
· The inherit optional parameter specifies that a numbered fo:list-block “inherits” the numbering of its ancestor numbered fo:list-blocks. In other words, this parameter may be used to implement what is often called multi-level numbering (e.g. 1.A.a.)
For example, let's suppose topmost fo:list-block is numbered 1-, 2-, 3-, etc. Let's suppose its second list item contains a nested fo:list-block having attribute xfc:label-format="%{upper-alpha;inherit})". Then this nested list will be automatically numbered 2-A), 2-B), 2-C), etc.
· The start= optional parameter specifies the starting number of the first item in an ordered list. Its default value is 1.

	Limitations
· Specifying both inherit and start=N is currently not really supported and generally gives unexpected results.
· Something like start=continue is currently not supported.

Example:
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:xfc="http://www.xmlmind.com/foconverter/xsl/extensions">
 ...
 <fo:list-block font-family="monospace" margin-left="10pt"
 provisional-distance-between-starts="1cm"
 provisional-label-separation="5pt"
 space-before="2pt"
 xfc:label-format="•%{lower-roman;start=10}">
 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
 <fo:block>•x</fo:block>
 </fo:list-item-label>

 <fo:list-item-body start-indent="body-start()">
 <fo:block>This is the first item
 of the list.</fo:block>
 </fo:list-item-body>
 </fo:list-item>

 <fo:list-item>
 <fo:list-item-label end-indent="label-end()">
 <fo:block>•xi</fo:block>
 </fo:list-item-label>

 <fo:list-item-body start-indent="body-start()">
 <fo:block>This is the second item
 of the list.</fo:block>
 </fo:list-item-body>
 </fo:list-item>
 </fo:list-block>
 ...
The heuristics used by XFC corresponds to the following values of xfc:label-format:
· -, +, *, • (bullet), – (endash).
· %{decimal;start=0}, %{decimal}, %{lower-alpha}, %{upper-alpha}, %{lower-roman}, %{upper-roman}.
· %{decimal;start=0}., %{decimal}., %{lower-alpha}., %{upper-alpha}., %{lower-roman}., %{upper-roman}..
· %{decimal;start=0}), %{decimal}), %{lower-alpha}), %{upper-alpha}), %{lower-roman}), %{upper-roman}).
· (%{decimal;start=0}), (%{decimal}), (%{lower-alpha}), (%{upper-alpha}), (%{lower-roman}), (%{upper-roman}).
· [%{decimal;start=0}], [%{decimal}], [%{lower-alpha}], [%{upper-alpha}], [%{lower-roman}], [%{upper-roman}].
· <%{decimal;start=0}>, <%{decimal}>, <%{lower-alpha}>, <%{upper-alpha}>, <%{lower-roman}>, <%{upper-roman}>.
4.3. Leaders
For lack of a corresponding element in the output formats, leader objects are implemented by means of tab stops. This is not very convenient given the leader object specification, since there is no way for XFC to derive the tab position from the property values. Though XFC will usually set the tab position to a reasonable value by default, this arbitrary position is unlikely to result in the intended layout.
However, the actual tab position may be specified to XFC by setting an additional property on the leader object. This property is named tab-position and must be defined in the XFC namespace (http://www.xmlmind.com/foconverter/xsl/extensions). The property value is a <length> as defined in section 5.11 of the Recommendation. A positive value specifies the tab position relative to the left margin, whereas a negative value specifies the position relative to the right margin.
An additional property named tab-align specifies how the content following a tab is horizontally aligned. The possible values for this property are: left, center, right and decimal. Using the tab-align property is optional. By default, the content following a tab is left aligned.
The code samples below are excerpts from file xslutil_install_dir/addon/config/docbook/xsl/fo/autotoc.xsl. They illustrate a typical use of the tab-position and tab-align properties in an XSL stylesheet.
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:xfc="http://www.xmlmind.com/foconverter/xsl/extensions"
 version='1.0'>
<fo:leader leader-pattern="dots"
 leader-pattern-width="3pt"
 leader-alignment="reference-area"
 xfc:tab-position="-30pt"
 xfc:tab-align="right"
 keep-with-next.within-line="always"/>
4.4. Other extension attributes
4.4.1. The xfc:outline-level extension attribute
Extension attribute xfc:outline-level may be used to mark a fo:block as a heading having the outline level specified by the value of the attribute. The value of this attribute is an integer between 1 and 9 inclusive. Any other value will cause attribute xfc:outline-level to be ignored.
Specifying outline levels allows to:
· Use the Document Map and the Outline View in MS-Word. Use the Navigator Window in OpenOffice/LibreOffice.
· Insert a Table of Contents in a document edited in MS-Word or OpenOffice/LibreOffice.
Example:
<fo:block font-size="22pt" space-before="22pt"
 xfc:outline-level="4" color="#406080">Heading 4</fo:block>
4.4.2. The xfc:render-as-table extension attribute
Extension attribute xfc:outline-level may be used to specify that a fo:block is to be automatically converted to an equivalent fo:table. The value of this attribute is true or false.
This extension attribute is a quick and easy workaround for one of the most annoying limitations of XMLmind XSL-FO Converter: a fo:block having a border and/or background color and containing several other blocks, lists or tables was very poorly rendered in RTF, WML, DOCX and ODT. (Such container fo:blocks are quite commonly used, for example, to represent a complex note, admonition or sidebar.)
The reason of this limitation is due to the fact that the RTF, WML, DOCX and ODT output formats can —to make it simple— only contain a “flat” sequence of styled paragraphs and tables.
Example:
<fo:block margin="0.5em 2em" padding="1em 4em"
 border="1px solid #800000" background="#FFF0F0"
 xfc:render-as-table="true">
 <fo:block space-before="0.5em" space-after="0.5em">First paragraph.</fo:block>
 <fo:block space-before="0.5em" space-after="0.5em">Second paragraph.</fo:block>
 <fo:block space-before="0.5em" space-after="0.5em">Third paragraph.</fo:block>
</fo:block>
Note that xfc:render-as-table="true" is ignored when a named style (i.e. xfc:user-style) is used to style the fo:block.

	Tip
When converting to RTF XSL-FO files making use of extension attribute xfc:outline-level, you'll almost certainly want to pass option /w to fo2rtf.

4.5. Special uses of fo:block-container
4.5.1. Using fo:block-container to temporarily switch the page orientation from portrait to landscape
Element fo:block-container with a reference-orientation attribute equal to 90, 270, -90 or -270 may be used to temporarily switch the page orientation from portrait to landscape. This feature is typically used to help MS-Word or OpenOffice/LibreOffice display a wide table or a wide figure.
Example:
<fo:block-container reference-orientation="90">
 <fo:block>...</fo:block>
 <fo:table>...</fo:table>
</fo:block-container>
For this feature to work:
· The fo:block-container must be directly contained in the fo:flow[footnoteRef:1]1. Outside a fo:flow and a fo:table-cell (see below), fo:block-container is treated like a fo:block. [1: 1The fo:block-container may also be contained in a fo:block itself directly contained in the fo:flow.]

· The value of attribute reference-orientation must be 90, 270, -90 or -270. XFC does not make any difference between these four values to implement this feature.
· The width of current page layout must be smaller than its height. That is, the current page orientation must not be already landscape.
4.5.2. Using fo:block-container to rotate the content of a table cell
Element fo:block-container also is supported inside a fo:table-cell, where it may be used to rotate the content of this table cell. Outside a fo:flow (see above) and a fo:table-cell, fo:block-container is treated like a fo:block.
In order to rotate the content of a table cell, the fo:table-cell must contain a single fo:block-container with a reference-orientation attribute equal to 90, 270, -90 or -270.
Example 1: simplest, most common, case:
<fo:table-cell>
 <fo:block-container reference-orientation="90">
 <fo:block>Short Header</fo:block>
 </fo:block-container>
</fo:table-cell>
In the above case, there is generally no need to specify attribute inline-progression-dimension (or equivalently attribute width) and/or attribute block-progression-dimension (or equivalently attribute height) for the fo:block-container element:
· Attribute inline-progression-dimension is automatically given by XFC a value equals to the maximum width[footnoteRef:2]2 of the content of the fo:block-container. [2: 2That is, with no word wrap.]

· Attribute block-progression-dimension is automatically given by XFC a value equals to N * 1.2 * FS, when N is the number of blocks, lists or tables contained the fo:block-container and FS is the font size[footnoteRef:3]3 of the fo:block-container. [3: 3This font is generally inherited from the ancestors of the fo:block-container element.]

Example 2: simple case:
<fo:table-cell>
 <fo:block-container reference-orientation="-90">
 <fo:block>Short Header</fo:block>
 <fo:block>One more line!</fo:block>
 </fo:block-container>
</fo:table-cell>
Given the default values assigned by XFC to attributes inline-progression-dimension and block-progression-dimension, the above example should be also rendered correctly.
Example 3: may require specifying attribute block-progression-dimension (or equivalently attribute height):
<fo:table-cell>
 <fo:block-container reference-orientation="90"
 block-progression-dimension="96px">
 <fo:block><fo:external-graphic src="logo96x96.png"/>ACME Corp</fo:block>
 </fo:block-container>
</fo:table-cell>
Example 4: requires specifying both attribute inline-progression-dimension (or equivalently attribute width) and attribute block-progression-dimension (or equivalently attribute height):
<fo:table-cell>
 <fo:block-container reference-orientation="270"
 inline-progression-dimension="15em"
 block-progression-dimension="5cm">
 <fo:block>Quite long header possibly containing
 several lines of text. (Note that a fo:block-container
 is not limited to a single fo:block or even to
 fo:blocks.)</fo:block>
 </fo:block-container>
</fo:table-cell>

	Word processor bugs related to rotating the content of a table cell
· OpenOffice/LibreOffice only supports the simplest case, like in above example 1.
· Microsoft Word 2007/2010/2013, .docx format: if the content of fo:block-container contains an image, then the position of this image is incorrect for a reference-orientation attribute equal to 90 or -270. There is no such issue with the RTF and WordprocessingML file formats and with Microsoft Word 2003+Microsoft Office Compatibility Pack, whatever the file format.

4.6. Adding language information to the documents created by XFC
Without this information, the word processor thinks that the document is entirely written in its default language; which may be very annoying when this is not the case (false errors reported by the spell checker).

	Important
For attribute language and, optionally, attribute country (or equivalently, xml:lang) to be considered to generate information for use by the word processor, attribute language (or equivalently, xml:lang) must be specified at least on the fo:root element.

Other limitations:
· Will not work for right-to-left languages (e.g. ar, he).
· Attribute script is ignored, as well as xml:lang values including script information (e.g. sr-Latn-RS).
· Use the two-letter ISO 639-1 code of a language if this code exists (e.g. en, fr, de, es), otherwise use the 3-letter ISO 639-2 code (e.g. fil, tzm, sah).
· Always use the two-letter ISO 3166 code of a country (e.g. GB, BE, AT, AR).

	Note
For East Asian language (e.g. zh, ja, ko) detection by MS-Word to work on a Windows computer having a Western locale,
· you must select "Region and Language Options" from Windows Control Panel and check "Install files for East Asian languages";
· you may have to use a font having East Asian glyphs (e.g. "MS Gothic") for the text runs containing East Asian characters.

4.7. Adding metadata to the documents created by XFC
Element xfc:document-information may be used to to add metadata[footnoteRef:4]4 to the documents created by XFC[footnoteRef:5]5. This element is expected to be a child element of standard XSL-FO element fo:declarations. [4: 4Data stored in a document about the document, e.g. the usual author, title, date, etc, but also custom metadata.] [5: 5This is the XFC equivalent of MS-Word "File → Info → Properties, Advanced Properties".]

<xfc:document-information>
 Content: [xfc:meta]*
</xfc:document-information>

<xfc:meta
 name = non empty string
 content = string
/>
Example:
<xfc:document-information>
 <xfc:meta name="xfc:creator" content="Fox Mulder" />
 <xfc:meta name="xfc:created" content="1993-09-10" />
 <xfc:meta name="xfc:keywords"
 content="extraterrestrial life, abduction, supernatural" />
 <xfc:meta name="is_classified" content="true" />
</xfc:document-information>
It's also possible to restrict editing in the documents created by XFC using command-line arguments /meta name value.
When both element xfc:document-information and the aforementioned command-line argument are specified, it's the command-line argument which is used. In the case of the above xfc:document-information example, /meta is_classified false may be used to replace the is_classified custom metadata.
The attributes of element xfc:meta are:
name
Required. The name of the metadata. This may be the name of a standard metadata (e.g. xfc:creator) or a custom metadata (e.g. is_classified).
content
Required. The value of the metadata.
4.7.1. Standard metadata
A standard metadata has a generic name (always starting with "xfc:") which, when supported by the output format, is translated to a “native”, case-sensitive, metadata name. For example, "xfc:creator" is translated to DOCX "dc:creator", WML "Author", RTF "author" and ODT "meta:initial-creator".
Table 5.3. Standard metadata

	Generic name
	Type
	Description

	xfc:category
	String
	A categorization of the content of the document.

	xfc:contentStatus
	String
	The status (e.g. "Draft", "Final") of the document.

	xfc:created
	Date
	The date of creation of the document.

	xfc:creator
	String
	The initial author of the document.

	xfc:description
	String
	An explanation of the content of the document.

	xfc:identifier
	String
	An unambiguous reference to the document within a given context (e.g. ISBN, URN).

	xfc:keywords
	String
	Comma-separated set of keywords to support searching and indexing.

	xfc:language
	String
	The code (e.g ISO 639-1) of main language of the document.

	xfc:lastModifiedBy
	String
	The user who performed the last modification.

	xfc:lastPrinted
	Date
	The date of the last printing.

	xfc:modified
	Date
	The date on which the document was changed.

	xfc:revision
	Positive integer
	The revision number (e.g the number of saves).

	xfc:subject
	String
	The topic of the content of the document.

	xfc:title
	String
	The title of the document.

	xfc:version
	String
	The version number of the document.

	xfc:manager
	String
	The manager of the author of the document.

	xfc:company
	String
	The company that employs the author of the document.

	xfc:final
	Boolean: true or false
	If true, the author lets anyone who opens the document know that there aren't going to be any more changes made to it. This also makes the document read-only.

Supported date formats are documented in "W3C Note on Date and Time Formats [W3CDTF]". Examples: 2020, 2020-09, 2020-09-16, 2020-09-16T19:20, 2020-09-16T17:20:30Z, 2020-09-16T19:20:30.45+02:00.
It is of course possible to use the “native” name of a standard metadata rather than its generic name. When both names are specified (e.g. xfc:creator="John Doe" and DOCX dc:creator="Jane Doe"), it is the value specified using the native name which is stored in the generated document (e.g. dc:creator="Jane Doe").
Table 5.4. Standard metadata supported by the DOCX output format

	Generic name
	Native name (case sensitive)

	xfc:category
	category

	xfc:contentStatus
	contentStatus

	xfc:created
	dcterms:created

	xfc:creator
	dc:creator

	xfc:description
	dc:description

	xfc:identifier
	dc:identifier

	xfc:keywords
	keywords

	xfc:language
	dc:language

	xfc:lastModifiedBy
	lastModifiedBy

	xfc:lastPrinted
	lastPrinted

	xfc:modified
	dcterms:modified

	xfc:revision
	revision

	xfc:subject
	dc:subject

	xfc:title
	dc:title

	xfc:version
	version

	xfc:manager
	Manager

	xfc:company
	Company

	xfc:final
	_MarkAsFinal

Table 5.5. Standard metadata supported by the WML output format

	Generic name
	Native name (case sensitive)

	xfc:category
	Category

	xfc:contentStatus
	Not a standard metadata.

	xfc:created
	Created

	xfc:creator
	Author

	xfc:description
	Description

	xfc:identifier
	Guid

	xfc:keywords
	Keywords

	xfc:language
	Not a standard metadata.

	xfc:lastModifiedBy
	LastAuthor

	xfc:lastPrinted
	LastPrinted

	xfc:modified
	LastSaved

	xfc:revision
	Revision

	xfc:subject
	Subject

	xfc:title
	Title

	xfc:version
	Version (must match regular expression "([0-9]?[0-9].[0-9]{4})|([0-9]?[0-9])")

	xfc:manager
	Manager

	xfc:company
	Company

	xfc:final
	_MarkAsFinal (not supported by MS-Word 2003)

	No generic name.
	AppName, the name of the application that created the document.

Table 5.6. Standard metadata supported by the RTF output format

	Generic name
	Native name (case sensitive)

	xfc:category
	category

	xfc:contentStatus
	Not a standard metadata.

	xfc:created
	creatim

	xfc:creator
	author

	xfc:description
	doccomm

	xfc:identifier
	Not a standard metadata.

	xfc:keywords
	keywords

	xfc:language
	Not a standard metadata.

	xfc:lastModifiedBy
	operator

	xfc:lastPrinted
	printim

	xfc:modified
	revtim

	xfc:revision
	Not a standard metadata.

	xfc:subject
	subject

	xfc:title
	title

	xfc:version
	Not a standard metadata.

	xfc:manager
	manager

	xfc:company
	company

	xfc:final
	_MarkAsFinal (not supported by MS-Word 2003)

	No generic name.
	comment, comments; text is ignored.

	No generic name.
	buptim, the date/time of last backup.

Table 5.7. Standard metadata supported by the ODT output format

	Generic name
	Native name (case sensitive)

	xfc:category
	Not a standard metadata.

	xfc:contentStatus
	Not a standard metadata.

	xfc:created
	meta:creation-date

	xfc:creator
	meta:initial-creator

	xfc:description
	dc:description

	xfc:identifier
	Not a standard metadata.

	xfc:keywords
	meta:keywords

	xfc:language
	dc:language

	xfc:lastModifiedBy
	dc:creator

	xfc:lastPrinted
	meta:print-date

	xfc:modified
	dc:date

	xfc:revision
	meta:editing-cycles

	xfc:subject
	dc:subject

	xfc:title
	dc:title

	xfc:version
	Not a standard metadata.

	xfc:manager
	Not a standard metadata.

	xfc:company
	Not a standard metadata.

	xfc:final
	Emulated using the read-only restriction. See below.

	No generic name.
	meta:generator, a string that identifies the application or tool that was used to create or last modify the document.

	No generic name.
	meta:printed-by, the name of the last person who printed the document.

	No generic name.
	meta:editing-duration, the total time spent editing the document. Duration format is: "PnYnMnDTnHnMnS".

4.7.2. Custom metadata
A metadata having a non standard native name (e.g. "is_classified") or a standard generic name not supported by the output format (e.g. "xfc:manager" not supported by ODT) is considered to be a custom metadata.
A custom metadata is generally stored as a typed value. Supported types are generally: boolean, number, date and string. So when you want to specify a boolean, make sure to specify true or false and when you want to specify a date, make sure to use one of the formats documented in "W3C Note on Date and Time Formats [W3CDTF]".
4.8. Restricting editing in the documents created by XFC
Element xfc:document-protection may be used to control the type of changes which can be made to the documents created by XFC[footnoteRef:6]6. This element is expected to be a child element of standard XSL-FO element fo:declarations. [6: 6This is the XFC equivalent of MS-Word "File → Info → Protect Document, Restrict Editing".]

<xfc:document-protection
 restrictions = Restrictions
 password = string
/>

Restrictions = [limited-formatting]?
 [read-only|comments-only|tracked-changes-only|fill-forms-only]?
Example:
<xfc:document-protection password="changeit"
 restrictions="tracked-changes-only limited-formatting" />
It's also possible to restrict editing in the documents created by XFC using command-line arguments /prot restrictions and /password password.
When both element xfc:document-protection and any of the aforementioned command-line arguments are specified, it's the command-line argument which is used. In the case of the above xfc:document-protection example, /password "" may be used to discard the password.
The attributes of element xfc:document-protection are:
restrictions
Specifies how the generated document is to be restricted in terms of editing and/or formatting.

	Restriction
	Description

	read-only
	No changes are permitted; the document is read-only.

	comments-only
	No changes are permitted, but comments can be inserted.
ODT output format: comments-only restriction not supported.

	fill-forms-only
	No changes are permitted, but data can be entered into forms.
ODT output format: fill-forms-only restriction not supported.

	tracked-changes-only
	All changes are permitted, but they're automatically tracked.

	limited-formatting
	No direct formatting (e.g. Bold, Italic) and limit formatting to a selection of styles.
RTF, ODT output formats: limited-formatting restriction not supported.

password
This clear text password lets the user of the word processor remove the restrictions specified by attribute restrictions.
RTF, WML output formats: password not supported. ODT output format: password supported only for restriction tracked-changes-only.
4.9. Special characters
XFC uses an instance of the System.Text.Encoding class to determine if a given character can be represented in the output encoding. Characters that cannot be encoded are then represented using a Unicode control word (RTF output) or an XML character reference (WML, Open XML and OpenDocument output).
4.10. Special support for East Asian fonts

	Important
This feature is supported by the ODT, WML and DOCX output formats, but not by the RTF output format.

When using East Asian fonts in a XSL-FO file[footnoteRef:7]7 to render CJK (Chinese Japanese Korean) text, these fonts must be declared to XFC. [7: 7Either directly in the XSL-FO file or indirectly through the use of named styles.]

This is done using the eastAsiaFontFamilies property. This property is specified using command line option /eaf map. The value of this property is a font family map having the following syntax:
map -> entry [',' entry]*

entry -> east_asian_family '=' western_family
Note that western_family must be an actual font family (e.g. Arial). Generic font families (e.g. sans-serif) are not supported here.
Example ("MS UI Gothic" is a Japanese font):
<fo:inline font-family="MS UI Gothic">ねこ ‎romaji neko</fo:inline>
Let's suppose the font family map used for the XSL-FO file containing the above example is:
MS UI Gothic=Times New Roman,Meiryo=Calibri
The above font family map has two effects on XFC:
1. Font families "MS UI Gothic" and "Meiryo" are declared as being East Asian fonts and will be used to render the CJK text segments. In the above example, "ねこ" is rendered using the "MS UI Gothic" font.
2. When a text run contains a mix of CJK text and Western text, the "Times New Roman" and "Calibri" fonts will be used to render the Western text segments. In the above example, "romaji neko" is rendered using the "Times New Roman" font, even if the fo:inline containing this segment requests "MS UI Gothic".
4.11. Multiple page layouts
XFC supports all conditional-page-master-reference element combinations that can be accommodated by a single RTF section. This means the following page sequence layouts are supported:
· Single-sided layout.
· Header page + single-sided layout.
· Double-sided layout.
· Header page + double-sided layout.
This applies to all output formats. Also, note that a single RTF section can handle different headers/footers on left/right/first pages, but does not allow page geometry changes, except for switching left and right margins on facing pages. This restriction does not apply to OpenDocument output.
Note: By default RTF, WML and Open XML output documents are given a double-sided page layout regardless of the input document properties. This results in all sections having separate headers/footers for odd and even pages, even though the content of both headers/footers may be identical. It may also result in blank pages being inserted in the document in order for every section to start on an odd page.
4.12. Adding a watermark to the generated document
Adding a watermark to the generated document is done the way which is supported by all the other XSL-FO processors, that is, by setting the background-image property of fo:region-body. Example:
<fo:simple-page-master master-name="center"
 margin-bottom="1.5cm" margin-left="1.5cm"
 margin-right="1.5cm" margin-top="1.5cm"
 page-height="29.7cm" page-width="21cm">
 <fo:region-body border-style="solid" border-width="1pt"
 margin-bottom="0.5cm" margin-top="0.5cm" padding="7.5pt"
 background-image="url(images/draft.png)"
 background-position="center"/>
 <fo:region-before display-align="before" extent="0.5cm" />
 <fo:region-after display-align="after" extent="0.5cm" />
</fo:simple-page-master>
Note that only the background-image, background-position-horizontal and background-position-vertical properties (and the corresponding shorthand properties) are supported. Other background image properties such as background-repeat are ignored. Moreover the only supported values for background-position-horizontal are: left, 0%, center, 50%, right, 100% and the supported values for background-position-vertical are: top, 0%, center, 50%, bottom, 100%.
4.13. Expressions
Use of expressions for property values specification is supported, subject to the following restrictions:
· The proportional-column-width function may not be part of an arithmetic expression, i.e. it must be used as a single primary expression.
· The system-color, system-font and merge-property-values are not supported.
4.14. Non-standard extension of XSL-FO property text-decoration
In addition to the decoration type (underline, overline, line-through, etc) supported by XSL-FO property text-decoration, it's possible to specify the color, style (solid, double, dotted, dashed, wavy) and thickness of the text decoration. The syntax used for extended simple properties[footnoteRef:8]8 is identical to the syntax of CSS3 property text-decoration. [8: 8Notation "||" means: at least one of these items must be present, and they may appear in any order.]

text-decoration = 'inherit' | [line || style || color || thickness]

line = 'none' |
 [['underline' | 'no-underline'] || ['overline' | 'no-overline'] ||
 ['line-through' | 'no-line-through'] || ['blink' | 'no-blink']]

style = 'solid' | 'double' | 'dotted' | 'dashed' | 'wavy'

color = 'currentcolor' | Hexadecimal_color | RGB_color

thickness = 'auto' | 'from-font' | Length | Percentage
Actual support of the “simple properties” comprising text-decoration by the RTF, WML, DOCX, ODT output formats varies:

	Output format
	Support of “simple properties”

	RTF, WML, DOCX
	· overline not supported.
· line-through only solid or double and always currentcolor.
· Thickness not supported: any value larger or equal to 3pt (e.g. 4px) is translated to DOCX thickness "heavy" (which means thicker that normal thickness).
· DOCX thickness "heavy" not supported for style "double".

	ODT
	· line-through only solid or double and always currentcolor.
· Thickness not supported: any value larger or equal to 3pt (e.g. 4px) is translated to ODT thickness "bold" (which means thicker that normal thickness).

	Remember that OpenOffice/LibreOffice automatically underlines hyperlinks
By default, OpenOffice/LibreOffice automatically underlines and gives a blue color to hyperlinks. In some cases, this automatic feature may give you the impression that there is something wrong with the text-decoration property you have specified, except that you probably did not specify any text-decoration property there at all!

	
	
	

	
	Support of the XSL-FO v1.0 standard
	

	
	Support of the XSL-FO v1.0 standard
	

	
	
	

	
	
	

	
	
	

Chapter 6. XSL-FO extension for generating named styles
1. Why generate named styles?
As of XMLmind XSL-FO Converter (XFC for short) v5[footnoteRef:9]1, it becomes possible to generate RTF, WordprocessingML, Office Open XML (.docx) and OpenOffice (.odt) files where most of the text formatting is achieved using named paragraph styles ("Normal", "Heading 1", "Heading 2", etc) and named character styles ("Strong", "Emphasis", etc). [9: 1Prior releases of XFC only supported direct formatting.]

Moreover, a named paragraph style may reference a named numbering scheme (also known as a “list style”). This allows to implement numbered headings and advanced —multilevel— lists purely by using named paragraph styles.
The main benefits of generating named styles are for the end-user of the word processor files:
· Thanks to the names of the styles, the document, when opened in MS-Word or OpenOffice/LibreOffice, looks familiar and its organization is easier to understand.
· After a change, the numbering of headings and list items is automatically updated by the word processor.
· The formatting of the document is a snap to modify using the various style editors included in the word processor.
2. How it works
2.1. Putting named styles to work
Named styles are specified in an XML file conforming to the styles.xsd schema. The recommended extension for this kind of file is ".xfc". Simple example, sample0.xfc:
<styles xmlns="http://www.xmlmind.com/foconverter/xsl/extensions"
 xmlns:xfc="http://www.xmlmind.com/foconverter/xsl/extensions">

 <text-style name="Warning" font-weight="bold" color="red" />

</styles>
The location of the .xfc file containing the style definitions must be passed as the value of the styles parameter to XFC, for example by the means of the /sty command-line option.
The named styled is referenced by the means of the xfc:user-style extension attribute. Simple example, sample0.fo:
<fo:block>During take-off and landing,
 <fo:inline xfc:user-style="Warning">always keep your seat belt
 fastened</fo:inline>.</fo:block>
Command-line example:
fo2docx /sty sample0.xfc sample0.fo sample0.docx
2.2. The effect of the xfc:user-style extension attribute on an XSL-FO element
If set on a fo:inline element, attribute xfc:user-style must reference the name of an existing xfc:text-style element. If set on a fo:block element, attribute xfc:user-style must reference the name of an existing xfc:paragraph-style element.
The following fo:inline element
<fo:inline xfc:user-style="Warning">always keep your seat belt
fastened</fo:inline>
is rendered by the target word processor exactly as if it was specified as[footnoteRef:10]2: [10: 2XFC named styles are similar to XSLT xsl:attribute-sets. However xsl:attribute-set elements are processed by the XSLT engine, while text-style and paragraph-style elements are processed by XFC (which is an XSL-FO processor, and not an XSLT engine).]

<fo:inline font-weight="bold" color="red">always keep your seat belt
fastened</fo:inline>
The main difference between the two specifications is that, with the first specification, the user of the word processor may use the style editor to specify, for example, that all warning text runs are to be rendered in orange rather than in red.
Figure 6.1. The style editor of MS-Word 2007
[image:]
The second specification is said to generate direct style properties on the resulting text run. When this is the case, there is no way for the user of the word processor to use the style editor to specify that all warning text runs are to be rendered in orange rather than in red.
It's of course possible, and often useful, to mix xfc:user-style with standard XSL-FO attributes:
· In the following example, redundant attributes such as font-weight="bold" an color="red" (already contained in the "Warning" text-style) are simply ignored by XFC:
<fo:inline xfc:user-style="Warning"
 font-weight="bold" color="red">always keep your seat belt
fastened</fo:inline>
This is an important feature as we'll see it in Section 5, “Adding named styles support to an existing XSLT stylesheet”.
· With the following snippet, the resulting warning text run will be rendered using a bold, italic, font and a red color:
<fo:inline xfc:user-style="Warning"
 font-style="italic">always keep your seat belt
fastened</fo:inline>
· With the following snippet, the resulting warning text run will be rendered using a bold font and a blue color:
<fo:inline xfc:user-style="Warning"
 color="blue">always keep your seat belt
fastened</fo:inline>
Directly specified attribute color="blue" overrides the color="red" attribute found in the "Warning" text-style.
· With the following snippet, the resulting warning text run will be rendered using a bold, italic, larger font and a red color:
<fo:block font-weight="normal"
 font-style="italic" font-size="larger">During take-off and landing,
 <fo:inline xfc:user-style="Warning">always keep your seat belt
 fastened</fo:inline>.</fo:block>
Attributes font-weight="normal", font-style="italic" and font-size="larger" are inherited by the fo:inline from its parent fo:block. However, inherited attribute font-weight="normal" has no effect on the resulting warning text run as the "Warning" text-style contains attribute font-weight="bold".
3. Style reference

	About namespaces in the following sections
In the following sections, all the element names have a http://www.xmlmind.com/foconverter/xsl/extensions namespace and all attribute names have no namespace.

3.1. The styles element
The stylesheet passed as a parameter to XFC (/sty command-line option) is specified in an XML file conforming to the styles.xsd schema. The recommended extension for these XML files are ".xfc".
<styles>
Content: [text-style | paragraph-style | numbering]*
</styles>
Example:
<styles xmlns="http://www.xmlmind.com/foconverter/xsl/extensions"
 xmlns:xfc="http://www.xmlmind.com/foconverter/xsl/extensions">
 ...
</styles>
3.2. The text-style element
<text-style
 name = non empty token
 abstract = boolean : false
 base-style = name of another text-style
 Some standard XSL-FO text attributes
 Some standard XSL-FO background attributes
/>
Specifies a text style (also known as a “character style”) which can be applied to a fo:inline element by the means of the xfc:user-style extension attribute. Ignored if applied to any element other than fo:inline.
name
Required. Unique name of this text style.
abstract
If true, this text style is not intended to be directly applied to any fo:inline element. Instead, it is intended to be inherited by other text-style elements by the means of their base-style attributes.
base-style
Specifies another text-style element. This causes this text-style element to inherit all the XSL-FO attributes found in the base text-style element
The standard XSL-FO attributes allowed in a text-style element are:
· font-family
· font-size
· font-style
· font-weight
· font-variant
· font
· text-decoration
· baseline-shift
· color
· background-color
· background
Note that specifying any other XSL-FO attribute (e.g. text-transform) is reported as a fatal error.
Examples:
<text-style name="Basic" abstract="true" font="10pt sans-serif" />

<text-style name="Red" base-style="Basic" color="red" />
3.3. The paragraph-style element
<paragraph-style
 name = non empty token
 abstract = boolean : false
 base-style = name of another paragraph-style
 next-style = name of another paragraph-style
 numbering = name of a numbering
 numbering-level = integer between 1 and 10 inclusive
 outline-level = non empty string
 Some standard XSL-FO text attributes
 Some standard XSL-FO background attributes
 Some standard XSL-FO paragraph attributes
/>
Specifies a paragraph style which can be applied to a fo:block element by the means of the xfc:user-style extension attribute. Ignored if applied to any element other than fo:block.
name
Required. Unique name of this paragraph style.
abstract
If true, this paragraph style is not intended to be directly applied to any fo:block element. Instead, it is intended to be inherited by other paragraph-style elements by the means of their base-style attributes.
base-style
Specifies another paragraph-style element. This causes this paragraph-style element to inherit all the XSL-FO attributes and also the next-style, numbering, numbering-level and outline-level attributes found in the base paragraph-style element
next-style
Specifies the name of a paragraph-style element, this one or another one. A paragraph having next-style style will be automatically created by the word processor if the user presses key Enter inside a paragraph having this style.
numbering
Specifies that paragraphs having this style are to be automatically numbered by the word processor, the numbering scheme to be used being specified by the value of this attribute. See Section 3.4, “The numbering element”.
numbering-level
Required if numbering attribute has also been specified, but not required if this paragraph style is abstract. Specifies the list level of paragraphs having this style. See Section 3.4, “The numbering element”.
outline-level
Same extension attribute, except for the empty namespace, as Section 4.4.1, “The xfc:outline-level extension attribute”.
The standard XSL-FO attributes allowed in a paragraph-style element are:
· break-after
· break-before
· keep-together
· keep-with-next
· keep-with-previous
· orphans
· widows
· space-before
· space-after
· start-indent
· end-indent
· text-align
· text-align-last
· text-indent
· line-height (Number, percentage or length only. Not space.)
· padding-top
· padding-bottom
· padding-left
· padding-right
· padding
· border-top-style
· border-top-width
· border-top-color
· border-top
· border-bottom-style
· border-bottom-width
· border-bottom-color
· border-bottom
· border-left-style
· border-left-width
· border-left-color
· border-left
· border-right-style
· border-right-width
· border-right-color
· border-right
· border
· font-family
· font-size
· font-style
· font-weight
· font-variant
· font
· text-decoration
· baseline-shift
· color
· background-color
· background
Note that specifying any other XSL-FO attribute (e.g. padding-after, margin-left, keep-together.within-column, space-before.mininum) is reported as a fatal error.
Examples:
<paragraph-style name="Caption" base-style="Centered"
 keep-with-previous="always"
 font-style="oblique" font-size="smaller"
 start-indent="4em" end-indent="4em" />

<paragraph-style name="Bullet 3" numbering="Bullets" numbering-level="3"
 start-indent="2*24pt" />
3.4. The numbering element
<numbering
 name = non empty token
 show-all-levels = boolean : false
>
Content: [level]{1,10}
</numbering>

<level
 format = non empty string
 text-align = non empty string : start
 provisional-distance-between-starts = non empty string : 24pt
 provisional-label-separation = non empty string : 6pt
 Some standard XSL-FO text attributes
 Some standard XSL-FO background attributes
/>
Element numbering specifies a numbering scheme (also known as a “list style”) for use by a paragraph style. For this, the name of the numbering scheme must be referenced in the numbering attribute of element paragraph-style.
Attributes of element numbering:
name
Required. Unique name of this numbering scheme.
show-all-levels
If true, prepend to the number of a list item the numbers of all its “parent” list items. Ignored if this numbering scheme specifies bullets and not numbers.
For example, if list item "d." is “nested” inside list item "3.", itself “nested” inside list item "IV.", then the label found at the beginning of list item "d." will be in fact "IV.3.d.".
A numbering element may contain up to 10 level elements. A level element specifies a number or bullet format for a list item “nested” at the corresponding level. That is, top-level (“non-nested”) list items have a numbering level equal to 1 and their number/bullet formats are specified by the first level child of element numbering; list items “nested” inside top-level list items have a numbering level equal to 2 and their number/bullet formats are specified by the second level child of element numbering; and so on up to 10 “nesting” levels.
Attributes of element level:
format
Required. Number or bullet format specified using the syntax documented in Section 4.2.1, “The xfc:label-format extension attribute”.
text-align
Standard XSL-FO attribute text-align. Specifies the horizontal alignment of the number or bullet within the space specified using provisional-distance-between-starts.
provisional-distance-between-starts
Standard XSL-FO attribute provisional-distance-between-starts. If specified as a positive length, this gives a hanging indent to the list item.
provisional-label-separation
Standard XSL-FO attribute provisional-label-separation. Useful when provisional-distance-between-starts is 0 because it allows to separate the number or bullet from the body of the list item.
The other standard XSL-FO attributes allowed in a level element are:
· font-family
· font-size
· font-style
· font-weight
· font-variant
· font
· text-decoration
· baseline-shift
· color
· background-color
· background
Note that specifying any other XSL-FO attribute is reported as a fatal error.
Examples:
<numbering name="Bullets">
 <level format="•"
 provisional-label-separation="0" />
 <level format="-"
 provisional-label-separation="0" />
 <level format="●"
 text-align="right"
 provisional-distance-between-starts="48pt"
 provisional-label-separation="0" />
</numbering>

<numbering name="Numbers" show-all-levels="true">
 <level format="%{decimal}."
 font-family="sans-serif" font-weight="bold" font-size="10pt"
 color="#800000" />
 <level format="%{lower-alpha}."
 font-family="sans-serif" font-weight="bold" font-size="10pt"
 color="#008000" />
 <level format="-%{lower-roman}-"
 text-align="center"
 font-family="sans-serif" font-weight="bold" font-size="10pt"
 color="#000080" />
</numbering>
3.5. The xfc:user-style extension attribute
This extension attribute specifies which named style to use for a fo:inline or fo:block element. Example:
<fo:inline xfc:user-style="Warning">always keep your seat belt
fastened</fo:inline>
When an ".xfc" file has been passed as a parameter to XFC, for example by the means of the /sty command-line option:
· If set on a fo:inline element, attribute xfc:user-style must reference the name of an existing xfc:text-style element, otherwise a fatal error is reported.
· If set on a fo:block element, attribute xfc:user-style must reference the name of an existing xfc:paragraph-style element, otherwise a fatal error is reported.
· It's a fatal error to specify xfc:user-style on any XSL-FO element other than fo:inline and fo:block.
Attribute xfc:user-style is ignored, whatever its value, if no ".xfc" file has been passed as a parameter to XFC.
Attribute xfc:user-style="" (empty string value) is ignored in all cases.
3.6. The xfc:restart-numbering extension attribute
Using this boolean extension attribute is required to reuse the same numbered paragraph styles to create several logical lists.
Attribute xfc:restart-numbering is best explained using a simple example. The numbering element is:
<numbering name="Item Numbers" show-all-levels="true">
 <level format="%{decimal}."
 provisional-distance-between-starts="20pt"
 provisional-label-separation="0"
 font-family="serif" font-size="10pt" color="#004080" />
 <level format="%{upper-alpha}."
 provisional-distance-between-starts="30pt"
 provisional-label-separation="0"
 font-family="serif" font-size="10pt" color="#004080" />
</numbering>
The numbered paragraph styles are:
<paragraph-style name="Numbered Item 1" base-style="Numbered Item"
 numbering-level="1" start-indent="2em" />

<paragraph-style name="Numbered Item 2" base-style="Numbered Item"
 numbering-level="2" start-indent="2em + 20pt" />
What follows is meant to specify two “logical lists” separated by a paragraph.
<fo:block xfc:user-style="Numbered Item 1">First item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of first item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of first item.</fo:block>
<fo:block xfc:user-style="Numbered Item 1">Second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of second item.</fo:block>

<fo:block>A paragraph.</fo:block>

<fo:block xfc:user-style="Numbered Item 1">First item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of first item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of first item.</fo:block>
<fo:block xfc:user-style="Numbered Item 1">Second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of second item.</fo:block>
However the above XSL-FO snippet is converted to:
 1.
 1.A
 1.B
 2.
 2.A
 2.B
A paragraph.
 3.
 3.A.
 3.B.
 4.
 4.A.
 4.B
by XFC.
After adding attribute xfc:restart-numbering="true" to the first item of each logical list:
<fo:block xfc:user-style="Numbered Item 1"
 xfc:restart-numbering="true>First item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of first item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of first item.</fo:block>
<fo:block xfc:user-style="Numbered Item 1">Second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of second item.</fo:block>

<fo:block>A paragraph.</fo:block>

<fo:block xfc:user-style="Numbered Item 1"
 xfc:restart-numbering="true>First item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of first item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of first item.</fo:block>
<fo:block xfc:user-style="Numbered Item 1">Second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">First sub-item
 of second item.</fo:block>
 <fo:block xfc:user-style="Numbered Item 2">Second sub-item
 of second item.</fo:block>
This gives the expected result:
 1.
 1.A
 1.B
 2.
 2.A
 2.B
A paragraph.
 1.
 1.A
 1.B
 2.
 2.A
 2.B

	Tip
It is not required to add attribute xfc:restart-numbering="true" to the first item of the very first “logical list” of the XSL-FO file, however doing so is simpler and is harmless.

4. A comprehensive example
A comprehensive example demonstrating almost everything you can do with named styles is found in XFC_install_dir/samples/styles.fo:
...
<fo:block xfc:user-style="Heading 1">This is a block
having xfc:user-style="Heading 1".</fo:block>
...
The associated style definition file is XFC_install_dir/samples/styles.xfc:
...
<numbering name="Heading Numbering" show-all-levels="true">[image:]
 <level format="%{decimal}."
 provisional-distance-between-starts="0"
 provisional-label-separation="8pt"/>
 <level format="%{decimal}."
 provisional-distance-between-starts="0"
 provisional-label-separation="7pt" />
 <level format="%{decimal}."
 provisional-distance-between-starts="0"
 provisional-label-separation="6pt" />
</numbering>

<paragraph-style name="Heading" abstract="true" next-style="Paragraph"[image:]
 numbering="Heading Numbering"[image:]
 keep-with-next="always"
 font-family="sans-serif" font-weight="bold"
 color="#004080" />

<paragraph-style name="Heading 1" base-style="Heading"[image:]
 outline-level="1"[image:] numbering-level="1"[image:]
 font-size="16pt" line-height="0.82em"
 space-before="0.82em" space-after="0.82em" />
...
[image:]	Specifies the numbering, up to 3 levels, of the headings found in the generated word processor file.
[image:]	This is an abstract paragraph-style which is inherited by the "Heading 1", "Heading 2" and "Heading 3" actual paragraph-styles.
[image:]	This specifies how headings are to be automatically numbered by the word processor.
[image:]	A "Heading 1" paragraph-style which is applied to all first level headings.
[image:]	This specifies the outline level of a "Heading 1".
[image:]	This specifies the list level, that is, which level child element of the numbering element, applies to a "Heading 1".
You can generate styles.odt, styles.rtf, styles.word.xml, styles.docx by running make_samples inside the XFC_install_dir/samples/ folder.
5. Adding named styles support to an existing XSLT stylesheet
Retrofitting named styles support in an existing XSLT stylesheet which has been designed to generate XSL-FO for use by Apache FOP, RenderX XEP or Antenna House XSL Formatter (or XFC, but without named styles) is tedious and error prone. We strongly recommend to avoid doing this.
However, it's not difficult to design from scratch an XSLT stylesheet which generates XSL-FO making using of named styles and which works equally well when used in conjunction with XSL-FO processors other than XFC.
The key ideas allowing to do this are:
1. An extension attribute such as xfc:user-style should be ignored by XSL-FO processors other than XFC.
2. Specifying the same XSL-FO attributes twice —one time inside the named style for use by XFC and a second time directly on the XSL-FO element for use by the other XSL-FO processors— will not predate the possibility for the user of the word processor to later modify the aspect of the generated document by editing the named styles.
This works fine because as explained in Section 2.2, “The effect of the xfc:user-style extension attribute on an XSL-FO element”, XFC ignores redundant attributes, that is, XSL-FO attributes specified at the same time inside the named style and also directly on the XSL-FO element.
A sample XSLT stylesheet is found in sample1.xsl:
...
<xsl:attribute-set name="plain">
 <xsl:attribute name="font-family">serif</xsl:attribute>
 <xsl:attribute name="font-size">10pt</xsl:attribute>
 <xsl:attribute name="line-height">1.3em</xsl:attribute>
</xsl:attribute-set>
...

<xsl:attribute-set name="p" use-attribute-sets="plain">
 <xsl:attribute name="text-align">justify</xsl:attribute>
 <xsl:attribute name="space-before">1.3em</xsl:attribute>
 <xsl:attribute name="space-after">1.3em</xsl:attribute>
</xsl:attribute-set>

<xsl:template match="h:p">
 <fo:block xsl:use-attribute-sets="p">[image:]
 <xsl:if test="$use-styles = 'yes'">
 <xsl:attribute name="xfc:user-style">Paragraph</xsl:attribute>[image:]
 </xsl:if>

 <xsl:apply-templates />
 </fo:block>
</xsl:template>
[image:]	This fo:block element has a number of XSL-FO attributes directly set on it by the means of xsl:attribute-set "p".
[image:]	The very same XSL-FO attributes are found in the "Paragraph" paragraph-style. Excerpts from sample1.xfc:
<paragraph-style name="Paragraph" text-align="justify"
 font-size="10pt" line-height="1.3em"
 space-before="1.3em" space-after="1.3em" />
Run for example Saxon 6, to generate an XSL-FO file, sample1.fo, for use by XSL-FO processors other than XFC:
java -jar saxon.jar -o sample1.fo sample1.xhtml sample1.xsl
After doing that, convert sample1.fo to PDF for example using Apache FOP:
fop -r -q -fo sample1.fo -pdf sample1.pdf
Run for example Saxon 6, to generate an XSL-FO file, sample1_sty.fo, for use by XFC:
java -jar saxon.jar -o sample1_sty.fo sample1.xhtml sample1.xsl use-styles=yes
After doing that, convert sample1.fo to sample1.docx for example:
fo2docx /sty sample1.xfc sample1_sty.fo sample1.docx
6. Troubleshooting
6.1.	Is it possible to use the standard styles names of MS-Word —"Normal", "Heading 1", "Heading 2", "Strong", "Emphasis", etc— in my .xfc style definition file?
Yes, however it's recommended to avoid the name "Normal" for a paragraph-style as this has strange side-effects in MS-Word.
Note that using "Normal" as the name of a text-style works fine, except that MS-Word automatically renames this text style to "Normal1".
6.2.	When I attempt to modify the generated paragraph style in MS-Word or OpenOffice/Libre, the space after the paragraph is always set to 0pt.
More precisely, I've defined paragraph-style "Foo" as follows:
<paragraph-style name="Foo"
 space-before="10pt" space-after="20pt" />
and the fo:block referencing paragraph-style "Foo" has no attribute space-after or margin-bottom directly set on it.
The generated word processor file looks as expected. However, when I used the style editor of MS-Word or OpenOffice/Libre Office to modify the "Foo" paragraph style, I've found that, while the space before the paragraph was indeed set to 10pt, the space after the paragraph was set to 0pt. Please fix this bug.
This is not a bug. This is a limitation which, due to the internal design of XFC, cannot be removed.
<paragraph-style name="Foo"
 space-before="10pt" space-after="20pt" />
...
<fo:block xfc:user-style="Foo">...</fo:block>
is processed by XFC as if it was:
<paragraph-style name="Foo"
 space-before="10pt" space-after="0pt" />
...
<fo:block xfc:user-style="Foo"
 space-after="20pt">...</fo:block>
6.3.	I use a set of numbered paragraph styles (i.e. <paragraph-style numbering="XXX"/>) to create several lists. However all the list items are continuously numbered across the generated DOCX file as if it were a single, giant list. How to use a set of numbered paragraph styles to create several, distinct lists in the DOCX file?
See Section 3.6, “The xfc:restart-numbering extension attribute”.
	
	
	

	
	XSL-FO extension for generating named styles
	

	
	XSL-FO extension for generating named styles
	

	
	
	

	
	
	

	
	
	

Chapter 7. XSL-FO extension for Office Open XML
1. Introductory example
XMLmind XSL-FO Converter supports an XSL-FO extension to generate structured document tags (SDTs) in an Office Open XML document. Structured document tags are WordprocessingML elements that may be used to include form fields - such as text fields and drop-down lists - in an OOXML document and store form data in a dedicated part - called a Custom XML Data part - of the document. In other words, the SDT technology makes it possible to produce simple forms that can be loaded and filled in MS-Word 2007+[footnoteRef:11]1. As Custom XML Data parts are simple XML files the form data can then be easily extracted and processed. For further information regarding structured document tags refer to section 2.5.2 of part 4 (Markup Language Reference) of the Office Open XML specification, available from Ecma International. [11: 1This also works in MS-Word 2010 and 2013.]

The implementation and application area of this extension are better understood with a concrete example. Consider the simple XML instance below:
<?xml version="1.0" encoding="ISO-8859-1"?>
<organization>
 <name>Pixware</name>
 <category></category>
 <creation-date></creation-date>
 <logo></logo>
</organization>
Now imagine we would like a simple form to collect and retrieve the missing information. We will illustrate how to use the XSL-FO extension for Office Open XML to create a form that can be loaded and filled in MS-Word 2007.
1. Starting from our XML instance we first create an XSL-FO document, by applying an XSLT stylesheet or any other means. The XSL-FO tree will include custom elements that translate to form fields in the OOXML document. For instance the block below will provide a drop-down list with 3 entries for input of the organization category.
 <fo:block><fo:inline border="solid 1pt blue" font-family="Courier"
 padding="1mm"><sdt:drop-down-list
 binding="category" prompt="[Select category.]"
 title="Category">
 <sdt:list-entry value="business" />

 <sdt:list-entry value="non-profit" />

 <sdt:list-entry value="other" />
 </sdt:drop-down-list></fo:inline></fo:block>
The binding attribute of the sdt:drop-down-list element establishes the mapping between the field and an XML element in the Custom XML Data part. In the simplest case the value of this attribute is an XML element name, and the Custom XML Data part is automatically generated by XFC. In the above example the field value will be stored as the content of element category in the Custom XML Data part when the OOXML document is saved.
2. Using XFC we then convert the XSL-FO document to Office Open XML. The initial display of our sample document in MS-Word 2007 is shown below.
[image:]
This simple form includes a drop-down list for input of the organization category, a date field - a specialized text field which provides a date picker - for input of the creation date, and an image chooser for input of the logo. The figure below shows the appearance of the drop-down list when selected.
[image:]
3. This form may be used as a convenient means of collecting the missing information. The image below shows our sample document after it has been completed in MS-Word 2007.
[image:]
4. After the form has been filled the form data can be easily extracted and processed. (Office Open documents are basically ZIP archives, and the Custom XML part is stored in file customXml/item1.xml.) The Custom XML part of our sample document after it has been completed is shown below. (The content of the logo element is the base64-encoded image data. Part of the content has been deleted for the sake of clarity.) Typical processing of the form data includes updating the original XML document or data in an XML repository.
<?xml version="1.0" encoding="UTF-8"?><root>
 <name>Pixware</name>
 <category>business</category>
 <creation-date>1993-01-01</creation-date>
 <logo>R0lGODdhjgAoAOcAAAICAuM7YdIiNLYkLZkfKfH+/XkfK+jn6bbFw2oaItTS0OKWsl8VIba+
kmiCMJoncmYbtGAcTaCmm5PVBBvUmafKkoSe9dwEPZf5z4AOtKAHTehCG/rQiE60olUSEAA7</logo>
</root>
This is just a simple example to introduce the basics of the XSL-FO form field extension for Office Open XML. For further information and reference material, see below. You can also download the sample OOXML document to experiment with the form fields.
2. How it works
To include form fields in an OOXML document one must embed custom elements in the XSL-FO tree. These elements must be in a separate namespace specified by XMLmind. This namespace - referred to by prefix sdt in this document - must be declared in the opening tag of the root element of the XSL-FO tree, as shown below.
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:sdt="http://www.xmlmind.com/foconverter/xsl/extensions/docx/sdt">
2.1. Text field example
Consider the XSL-FO snippet below:
<fo:block margin-left="1cm" margin-right="1cm">Name: <fo:inline
border="solid 1pt blue" padding="1mm"><sdt:text-field binding="name"
prompt="[Enter your name here.]" title="Name" /></fo:inline></fo:block>
The sdt:text-field element will be converted by XFC to a plain text SDT, which provides the functionality of a basic text field. The prompt attribute specifies placeholder text to be initially displayed in the field. The sdt:text-field element is wrapped in an fo:inline object that carries presentation properties. The initial display of the whole block in MS-Word 2007 is shown below. The next image shows the appearance of the field when selected, and the last one shows the field once filled.
Figure 7.1. Text field (initial display)
[image:]
Figure 7.2. Text field (selected)
[image:]
Figure 7.3. Text field (filled)
[image:]
The binding attribute of the sdt:text-field element establishes the mapping between the field and an XML element in the Custom XML Data part. In the simplest case the value of this attribute is an XML element name. The Custom XML Data part will be automatically generated by XFC, in the form of a simple XML instance where all elements associated with form fields are children of the root element. Assuming the document contains no other field, XFC will therefore generate the XML instance below:
<?xml version="1.0" encoding="UTF-8"?>
<root>
 <name></name>
</root>
When saving the document after an editing session MS-Word will store the current value of the field as the content of the name element in the Custom XML Data part, as shown below.
<?xml version="1.0" encoding="UTF-8"?><root>
 <name>John Smith</name>
</root>
2.2. Drop-down list example
Consider the XSL-FO snippet below:
<fo:block margin-left="1cm" margin-right="1cm">Favorite Animal:
<fo:inline border="solid 1pt blue" padding="1mm"><sdt:drop-down-list
 binding="favorite-animal" initial-value="cat"
 title="Favorite Animal">
 <sdt:list-entry value="cat" />

 <sdt:list-entry value="dog" />

 <sdt:list-entry value="hamster" />
 </sdt:drop-down-list></fo:inline></fo:block>
The sdt:drop-down-list element will be converted by XFC to a drop-down list SDT, which provides the ability to select a single value from a predefined list. The list entries are specified by the sdt:list-entry children. The initial-value attribute of the sdt:drop-down-list element specifies the initial value of the field. The initial display of the whole block in MS-Word 2007 is shown below. The next image shows the appearance of the field while selecting an entry in the list.
Figure 7.4. Drop-down list (initial display)
[image:]
Figure 7.5. Drop-down list (selecting an entry)
[image:]
The initial-value attribute differs from the prompt attribute in that the specified value is initially stored in the Custom XML Data part. Assuming the document contains no other field, XFC will therefore generate the Custom XML Data part below:
<?xml version="1.0" encoding="UTF-8"?>
<root>
 <favorite-animal>cat</favorite-animal>
</root>
2.3. Specifying a Custom XML Data template
Sometimes it may be desirable to have form data stored in an XML instance more complex than the default instance generated by XFC. In this case a Custom XML Data template may be specified by inserting an sdt:configuration element before the first fo:page-sequence object in the XSL-FO tree, e.g.:
<sdt:configuration custom-xml-template="custom.xml" />
The custom-xml-template attribute specifies the URL of an XML template to be used as the initial content of the Custom XML Data part. This XML template must be encoded in UTF-8 or UTF-16.
When a Custom XML Data template is specified, the binding attribute of a form field associated with an XML element in the Custom XML Data part references that particular element by means of an XPath 1.0 expression. For instance, consider the XML template below:
<?xml version="1.0" encoding="UTF-8"?>
<order>
 <product>
 <reference />
 <quantity />
 </product>
 <product>
 <reference />
 <quantity />
 </product>
</order>
To associate the reference child of the first product element with a form field one would set the binding attribute value of that field to /order/product[1]/reference. Moreover, when a Custom XML Data template is specified the initial-value attribute of form fields is ignored. If a field is to be initialized the initial value must be stored in the Custom XML Data template as the content of the XML element associated with that field.
2.4. Extracting the Custom XML Data part
Office Open XML documents are basically ZIP archives, so the Custom XML Data part can be easily extracted. In accordance with MS-Word's naming scheme XFC stores the Custom XML Data part in ZIP entry customXml/item1.xml.
3. Reference Material
This section provides a comprehensive description of the custom elements that make up the XSL-FO extension for Office Open XML. These elements must be in a separate namespace specified by XMLmind. This namespace - referred to by prefix sdt in this document - must be declared in the opening tag of the root element of the XSL-FO tree, as shown below.
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:sdt="http://www.xmlmind.com/foconverter/xsl/extensions/docx/sdt">
There are five elements that translate into a form field:
· sdt:text-field
· sdt:drop-down-list
· sdt:combo-box
· sdt:date
· sdt:picture
These are inline-level elements that may appear anywhere inline-level Formatting Objects are allowed.
3.1. Generic attributes
The attributes described below apply to all form fields, except for the initial-value and prompt attributes that do not apply to the sdt:picture element.
· binding
This attribute establishes the mapping between a field and an XML element in the Custom XML Data part. In the simplest case the value of this attribute is an XML element name. The Custom XML Data part will be automatically generated by XFC, in the form of a simple XML instance where all elements associated with form fields are children of the root element. When a Custom XML Data template is specified the attribute value is an XPath 1.0 expression that identifies the XML element associated with the field. If this attribute is omitted no mapping is established.
· editable
This attribute specifies whether or not the field content is editable. Possible values are true (default) and false.
· initial-value
This attribute specifies the initial value of the field. The specified value will be stored in the Custom XML Data part, unless a Custom XML Data template is in use. (This attribute has no effect if a Custom XML Data template has been specified. In this case the initial value must be stored in the Custom XML Data template as the content of the XML element associated with the field.)
· locked
This attribute specifies whether or not the field is locked. Possible values are true (default) and false. (The feature of a locked field is that it cannot be deleted from the document.)
· prompt
This attribute specifies placeholder text to be initially displayed in the field if no initial value is provided. (If both the prompt and initial-value attributes are specified the latter will take precedence.)
· title
This attribute specifies the field title. This title is displayed as part of the field outline when the field is selected. The default value is specific to each field type.
3.2. sdt:text-field
This element is converted to a plain text SDT, which provides the functionality of a basic text field.
Figure 7.6. Text field
[image:]
Attributes:
· binding
See generic attributes.
· editable
See generic attributes.
· initial-value
See generic attributes.
· locked
See generic attributes.
· multi-line
This attribute specifies whether or not line breaks are allowed in the field value. Possible values are true and false (default).
· prompt
See generic attributes.
· title
See generic attributes. (The default value is Text Field).
Content model:
EMPTY
3.3. sdt:drop-down-list
This element is converted to a drop-down list SDT, which provides the ability to select a single value from a predefined list.
Figure 7.7. Drop-down list
[image:]
Attributes:
· binding
See generic attributes.
· editable
See generic attributes.
· initial-value
See generic attributes.
· locked
See generic attributes.
· prompt
See generic attributes.
· title
See generic attributes. (The default value is Drop-Down List).
Content model:
(sdt:list-entry)+
3.4. sdt:list-entry
This element specifies an entry in the list of possible values of a drop-down list or combo box SDT.
Attributes:
· display-text
This attribute specifies alternative text to be displayed when this entry is selected. (By default the actual entry value is displayed.)
· value
This attribute specifies the actual entry value. This is the value that will be stored in the Custom XML Data part when this entry is selected. This attribute is required. (The sdt:list-entry element is ignored if this attribute is omitted.)
Content model:
EMPTY
3.5. sdt:combo-box
This element is converted to a combo box SDT, which combines a text field and a drop-down list.
Attributes:
· binding
See generic attributes.
· editable
See generic attributes.
· initial-value
See generic attributes.
· locked
See generic attributes.
· prompt
See generic attributes.
· title
See generic attributes. (The default value is Combo Box).
Content model:
(sdt:list-entry)+
3.6. sdt:date
This element is converted to a date SDT, which is a text field with date semantics. This SDT provides a date picker for fast and secure input, though a date value may be typed in as well.
Figure 7.8. Date
[image:]
Attributes:
· binding
See generic attributes.
· editable
See generic attributes.
· format
This attribute specifies the date format. (This format is used by the date picker but is not enforced when a value is typed in directly.) The attribute value is a character string in which the following variables are recognized:

	Variable
	Expanded Value

	%D
	day of month (01-31)

	%M
	month (01-12)

	%Y
	year (4 digits)

	%y
	year (last 2 digits)

The default value is %Y-%M-%D.
· initial-value
See generic attributes.
· locked
See generic attributes.
· prompt
See generic attributes.
· title
See generic attributes. (The default value is Date).
Content model:
EMPTY
3.7. sdt:picture
This element is converted to a picture SDT, which provides the ability to select, display and edit images. The value of this field - stored as the content of the associated XML element in the Custom XML Data part - is the Base64-encoded image data.
Figure 7.9. Picture
[image:]
Attributes:
· binding
See generic attributes.
· editable
See generic attributes.
· locked
See generic attributes.
· title
See generic attributes. (The default value is Picture).
Content model:
(sdt:image-data)?
3.8. sdt:image-data
This element specifies the initial value of an sdt:picture element. It contains the Base64-encoded image data to be initially displayed in the picture SDT. If this element is omitted an image placeholder will be displayed. This placeholder includes a button to open an image selection dialog.
Attributes:
· format
This attribute specifies the image data format, in the form of a MIME type. Supported formats are GIF (image/gif), JPEG (image/jpeg) and PNG (image/png). This attribute is required. (The sdt:image-data element is ignored if this attribute is omitted.)
Content model:
#PCDATA
3.9. sdt:configuration
This element specifies optional parameters related to the Custom XML Data part. If this element is present in the XSL-FO tree it must occur before the first fo:page-sequence object.
Attributes:
· custom-xml-template
This attribute specifies the URL of an XML template to be used as the initial content of the Custom XML Data part. This XML template must be encoded in UTF-8 or UTF-16. The URL is resolved by XFC using its current URI resolver.
· prefix-mappings
This attribute specifies the mapping of namespace prefixes used in XPath expressions that identify an element in a Custom XML Data template. The attribute value is a list of namespace declarations separated by white space. This attribute is required if the Custom XML Data template makes use of namespaces. For instance, consider the XML template below:
<?xml version="1.0" encoding="UTF-8"?>
<order xmlns="http://www.xmlmind.com/ns/order">
 <product>
 <reference />
 <quantity />
 </product>
</order>
As this template contains a namespace declaration, names in XPath expressions that identify an element in the template should be qualified. For this purpose one would set the prefix-mappings attribute and use the so declared namespace prefix to qualify element names in XPath expressions, as shown below.
<sdt:configuration
 custom-xml-template="custom.xml"
 prefix-mappings="xmlns:ns="http://www.xmlmind.com/ns"/order" />
<sdt:text-field binding="/ns:order/ns:product/ns:reference"
 prompt="[Enter product reference.]" title="Reference" />
Content model:
EMPTY
	
	
	

	
	
	

	
	
	

11.png
oD

&2

B

Duaing ake-offandlanding hwass eep sou sea et Fstned.

o = ok

e e S o o, e e a

Drsmgsent
6 ot Qe s odon i

(]

= J (o]

12.png

13.svg

	
		
	

14.png
@ s organization - Microsoft Word

e (R NG AE AR N IR e I A e)

Organization Profile

Pixware]

[Select category.]

(Enter date.]

i

FERR R AR AT IR SRR CRRT A

15.png
Name: pixanre]

 Categoy|
Category: [Select category.]
CeationDate:

non-profit

other

16.png
@)\ E 96)s organizationfiled - Microsoft Word

e (R NG AE AR N IR e I A e)

Organization Profile

Pixware]

business]

199301

i

FERR R AR AT IR SRR CRRT A

17.png

18.png
Name:

Nome|

[Enter your name here.]

19.png
Name:

John Smith

20.png
Favorite Animal:

cat

21.png
|£ Favorite Animal |

22.png
|Date|

Date:|2007-11-29 | ~

4 novembre 2007 b
Immjvsd
031234
5678351011
RBEISE1TE
1820212232425

s2728 0 1 2

23.png

1.png

2.svg

	
		
	

3.png

4.svg

	
		
	

5.png

6.svg

	
		
	

7.png

8.svg

	
		
	

9.png

10.svg

	
		
	

