
XMLmind XML Editor - Commands
Hussein Shafie

XMLmind Software
<xmleditor-support@xmlmind.com>

XMLmind XML Editor - Commands
Hussein Shafie
XMLmind Software
<xmleditor-support@xmlmind.com>

Publication date March 22, 2024

Abstract

This document contains the reference of all native XXE commands and explains how to write custom macro-
commands.

Table of Contents
I. Guide .. 1

1. What is a command? .. 3
2. Writing macro-commands .. 5

1. How commands are executed ... 5
2. A sequence of commands ... 6
3. Alternative commands ... 7
4. Testing if a command can be executed .. 7
5. The "%_" variable ... 8
6. Macro-variables .. 9
7. Simple use of named variables .. 10
8. General use of get .. 12
9. Variables mapped to the selection in XXE ... 12
10. Contextual commands .. 13

II. Reference ... 15
3. Menu commands ... 20

1. Reference .. 20
2. Redefining or extending the right-click, contextual, popup menu 21

4. Macro commands .. 25
1. Reference .. 25

1.1. Pass and fail cheat sheet .. 29
1.2. Macro-variables .. 29
1.3. XPath variables ... 31

1.3.1. User variables .. 31
1.3.2. Predefined variables ... 31

2. Running XED scripts in a macro ... 34
3. Examples .. 38

5. Process commands ... 44
1. Reference .. 44

1.1. Attributes ... 49
1.2. Element copyDocument ... 49

1.2.1. Attributes ... 50
1.2.2. Element extract ... 51
1.2.3. Element resources .. 54

1.3. Element convertImage ... 56
1.3.1. Parameters supported by the built-in Java image toolkit 58

1.4. Element copyProcessResources .. 58
1.5. Element transform .. 60

1.5.1. Using a custom XSLT style sheet .. 62
1.6. Element processFO .. 63
1.7. Element upload .. 64
1.8. Element post ... 65
1.9. Element read ... 67
1.10. Element mkdir .. 67
1.11. Element rmdir .. 68
1.12. Element delete .. 68
1.13. Element copy .. 68
1.14. Element zip ... 69
1.15. Element jar ... 70
1.16. Element shell .. 71
1.17. Element invoke .. 73

iii

1.18. Element subProcess ... 75
1.19. Process variables ... 75

2. Commented examples .. 78
2.1. Convert explicitly or implicitly selected para to a formalpara 78
2.2. Convert a DocBook document to RTF .. 79
2.3. Convert ImageDemo document to HTML ... 82

6. Commands written in the Java™ programming language .. 84
1. alert .. 85
2. add ... 86
3. addAttribute .. 86
4. addBlockInFlow .. 86
5. autoSpellChecker ... 88
6. beep .. 88
7. cancelSelection .. 88
8. center .. 89
9. checkValidity .. 89
10. confirm ... 89
11. contextualMenu ... 90
12. convert .. 90
13. convertCase ... 91
14. copy .. 91
15. copyAsInclusion .. 92
16. copyChars ... 92
17. copyImage ... 93
18. cut .. 93
19. declareNamespace ... 93
20. demoteListItem .. 94

20.1. Configuring the promoteListItem and demoteListItem commands 94
21. delete .. 97
22. deleteChar ... 97
23. deleteSelectionOrDeleteChar .. 98
24. deleteSelectionOrJoinBlockOrDeleteChar ... 98
25. deleteWord .. 98
26. diffSupport .. 99
27. drag .. 100
28. drop .. 100
29. editAttribute .. 101
30. editAttributes ... 102
31. editObject .. 102
32. editPITarget ... 103
33. editMediaInfo .. 103
34. ensureSelectionAt .. 104
35. execute .. 105
36. executeMenuItem ... 105
37. extendSelectionAt .. 106
38. extractObject ... 107
39. fail .. 107
40. formatTextAs ... 108

40.1. Specifying an element template for use by command formatTextAs 108
40.2. Filtering the text pasted in the document ... 112

41. include .. 112
42. insert ... 114

iv

XMLmind XML Editor - Commands

43. insertCharByName ... 114
44. insertCharSequence .. 116
45. insertControlChar .. 117
46. insertNewlineOrSplitBlock ... 117
47. insertNode ... 118
48. insertOrOverwriteString ... 119
49. insertSpecialChars ... 119
50. insertSameBlock .. 119

50.1. Specifying splittable blocks ... 120
51. insertString .. 121
52. insertTextOrMoveDot ... 121
53. join ... 121
54. listAnchors .. 122
55. listBindings ... 122
56. listPlugins ... 122
57. listRepeatable .. 122
58. moveDotTo .. 123
59. moveElement ... 123
60. normalizeWhiteSpacePre .. 123
61. overwriteMode .. 124
62. overwriteString .. 124
63. pass ... 125
64. paste ... 125
65. pasteAs ... 126
66. pasteImageAs .. 127
67. pasteSystemSelection ... 127
68. pick ... 128
69. preview ... 128
70. promoteListItem .. 129
71. prompt .. 129
72. putAttribute ... 130
73. recordMacro .. 131
74. redo .. 132
75. refresh ... 132
76. reinclude ... 132
77. remark ... 133
78. removeAttribute ... 134
79. repeat .. 134
80. replace .. 134
81. resizeImage ... 134
82. resizeTableTemplate ... 136
83. resizeCALSTableTemplate ... 137
84. run .. 137
85. search .. 138
86. searchReplace .. 140
87. searchReplaceElement .. 140
88. selectAt ... 142
89. selectFile ... 142
90. selectConvertedFile .. 143
91. selectLink .. 146
92. selectNode ... 147

92.1. List of element names or node types ... 150

v

XMLmind XML Editor - Commands

92.2. OrNone, OrNode, OrElement modifiers .. 150
93. selectNodeAt ... 151
94. selectText .. 151
95. selectTo ... 152
96. setProperty .. 152
97. setReadOnly .. 153
98. setObject ... 154
99. showContentModel .. 155
100. showElementReference .. 155
101. showMatchingChar .. 155
102. showColumnRowLabels ... 156
103. spellCheck ... 157
104. split ... 157
105. start ... 157
106. status ... 157
107. toggleCollapsed ... 157
108. toggleTextStyle .. 159
109. undo .. 161
110. uninclude ... 161
111. updateInclusions .. 161
112. viewObject .. 161
113. webSearch ... 163

113.1. Declaring search engines ... 163
114. wrap .. 164
115. xIncludeText .. 165
116. xpathSearch ... 165
117. XXE.close ... 166
118. XXE.compare .. 166
119. XXE.edit ... 167
120. XXE.editInclusion ... 168
121. XXE.masterDocumentControl .. 168
122. XXE.new ... 170
123. XXE.open .. 171
124. XXE.save .. 172
125. XXE.saveAll .. 173
126. XXE.setReadOnly .. 174
127. XXE.saveAs .. 175
128. A generic, parameterizable, table editor command .. 175

A. Description of the XML differencing algorithm implemented by the Compare tool 180
1. Comparison with other approaches .. 180
2. Elements are given serial numbers .. 181
3. A simple XML differencing algorithm ... 181

B. Format of the revision history .. 183

vi

XMLmind XML Editor - Commands

List of Figures
6.1. The "Document conversion parameters" panel once expanded .. 145

vii

List of Examples
3.1. Whatever the configuration, add extra menu items to the right-click, contextual, popup
menu .. 23
3.2. DITA topic configuration: when an image is selected, allow to edit it using a helper applica-
tion ... 23
3.3. Any of the two XHTML 1.0 configurations: when some text is selected, display a special,
simpler, popup menu ... 24
4.1. Using sequence and choice .. 38
4.2. Macro-variables .. 39
4.3. The "%_" macro-variable .. 39
4.4. Using the fail construct .. 40
4.5. Using the XPath-based constructs match and set ... 40
4.6. A contextual drop .. 40
4.7. Insert nodes copied from another document .. 41
4.8. Convert a DocBook 5 para to a formalpara .. 42
6.1. XHTML example .. 87
6.2. TEI example ... 87
6.3. XHTML listItemSpecification ... 95
6.4. DITA listItemSpecification .. 96
6.5. DocBook 5 listItemSpecification .. 96
6.6. TEI listItemSpecification ... 96
6.7. LwDITA listItemSpecification ... 97
6.8. Implementing a “click to follow link” facility using executeMenuItem 105
6.9. MathML example ... 115

viii

Part I. Guide

Table of Contents
1. What is a command? .. 3
2. Writing macro-commands .. 5

1. How commands are executed ... 5
2. A sequence of commands ... 6
3. Alternative commands ... 7
4. Testing if a command can be executed .. 7
5. The "%_" variable ... 8
6. Macro-variables .. 9
7. Simple use of named variables .. 10
8. General use of get .. 12
9. Variables mapped to the selection in XXE ... 12
10. Contextual commands .. 13

2

Chapter 1. What is a command?
A command is an action which occurs in the view of a document, styled or not. This action is triggered
by a keystroke, mouse click, custom tool bar button (example: the XHTML tool bar) or custom menu
entry (example: the DocBook menu).

Some menu entries of XMLmind XML Editor such as File → Open have been made available as com-
mands. For example, the command corresponding to menu entry File → Open is called XXE.open [171].
But other menu entries such as File → Print are not (yet) available as commands. For example, you
cannot invoke File → Print from a custom tool bar and you cannot invoke File → Print from a macro-
command.

Almost all commands can be passed a parameter string which is used to parametrize the behavior of
the command. The syntax of this parameter string and its exact effects are totally command specific.
Therefore there is nothing more to say about these parameter strings except that you'll need to read the
reference manual of all native commands [84] to check what is supported and what is not.

There are four types of commands:

Commands written in the Java programming language

All generic commands written in the Java™ programming language are predefined: you don't need
to declare them.

All XML application specific commands written in the Java™ programming language (XMLmind
XML Editor - Developer's Guide describes how to write such commands) need to be declared in an
XXE configuration file (see XMLmind XML Editor - Configuration and Deployment). Example:

<command name="xhtml.preview">

 <class>com.xmlmind.xmleditext.xhtml.Preview</class>

</command>

Menu commands

A ̀ `menu command'' is a popup menu of commands. This special type of command, typically invoked
from contextual macro-commands, is intended to be used to specify contextual popup menus, rede-
fining or extending the standard right-click popup menu.

Menu commands must be specified in an XXE configuration file (see Section 4, “command” in
XMLmind XML Editor - Configuration and Deployment). Example:

<command name="convertCaseMenu">

 <menu>

 <item label="To Upper Case"

 command="convertCase" parameter="upper" />

 <item label="To Lower Case"

 command="convertCase" parameter="lower" />

 <item label="Capitalize Words"

 command="convertCase" parameter="capital" />

 </menu>

</command>

3

https://www.xmlmind.com/xmleditor/_distrib/doc/dev/index.html
https://www.xmlmind.com/xmleditor/_distrib/doc/dev/index.html
../configure/configure.pdf#configure
../configure/configure.pdf#command

Macro-commands

A macro-command is, to make it simple, a sequence of native commands, menu commands, process
commands or other macro-commands.

Macro-commands must be specified in an XXE configuration file (see Section 4, “command” in
XMLmind XML Editor - Configuration and Deployment). Example:

<command name="xhtml.convertToLink">

 <macro>

 <sequence>

 <command name="convert" parameter="a" />

 <command name="putAttribute" parameter="%*" />

 </sequence>

 </macro>

</command>

Process commands

A process command is an arbitrarily complex transformation of part or all of the document being
edited.

Process commands must be specified in an XXE configuration file (see Section 4, “command” in
XMLmind XML Editor - Configuration and Deployment). Example:

<command name="toSimpara">

 <process>

 <copyDocument selection="true" to="in.xml" />

 <transform stylesheet="simpara.xslt" cacheStylesheet="true"

 file="in.xml" to="out.xml" />

 <read file="out.xml" encoding="UTF-8" />

 </process>

</command>

4

What is a command?

../configure/configure.pdf#command
../configure/configure.pdf#command

Chapter 2. Writing macro-commands
The macro-command examples you'll find in this tutorial can be tested by creating a file called custom-
ize.xxe in XXE_user_preferences_dir/addon/ and binding the command to be tested to a keystroke.

XXE user preferences directory is:

$HOME/.xxe10/ on Linux.•
• $HOME/Library/Application Support/XMLmind/XMLEditor10/ on the Mac.
• %APPDATA%\XMLmind\XMLEditor10\ on Windows. Example: C:\Users\john\App-

Data\Roaming\XMLmind\XMLEditor10\.

If you cannot see the "AppData" directory using Microsoft Windows File Manager, turn
on Tools>Folder Options>View>File and Folders>Show hidden files and folders.

Example: this customize.xxe file binds a macro-command named convertToBold to keystroke F2.

<?xml version='1.0' encoding='ISO-8859-1'?>

<configuration

 xmlns="http://www.xmlmind.com/xmleditor/schema/configuration"

 xmlns:cfg="http://www.xmlmind.com/xmleditor/schema/configuration">

<binding>

 <keyPressed code="F2" />

 <command name="convertToBold" />

</binding>

<command name="convertToBold">

 <macro repeatable="true" undoable="true"

 label="Convert to Bold">

 <sequence>

 <command name="convert"

 parameter="[implicitElement] emphasis" />

 <command name="putAttribute" parameter="role bold" />

 </sequence>

 </macro>

</command>

</configuration>

More information about customizing XMLmind XML Editor in XMLmind XML Editor - Configuration
and Deployment.

The examples used in this tutorial are found in XXE_install_dir/doc/commands/macro_tutorial/cus-
tomize.xxe.

1. How commands are executed

Before attempting to write a macro-command, it is important to understand how commands (native or
not) are executed.

5

../configure/configure.pdf#configure
../configure/configure.pdf#configure

The execution of a command can be described as a sequence of two steps:

1. The command tests if it can be successfully executed. If this test fails, the command will not attempt
to execute itself: step #2 is silently skipped (that is, no warning or error messages are reported).

For this test to pass:

a. The command must successfully parse its parameter string (if any).

b. The current text or node selection (if any) must be compatible with the command. For example,
command replace [134] cannot be applied to text selection.

c. The grammar constraining the document (if any) must allow the operation.

2. The command is actually executed. It may return a result (a Java object) to its invocation environment.

Very few commands return a result. Unless explicitly documented, one must assume that commands
do not return a result.

Some commands such as selectFile [142] return an actual result (a file name or an URL in the case
of command selectFile [142]) or a special result understood by the invocation environment as
``command has failed or has been canceled by user'' (in the case of command selectFile [142], user
has clicked on the Cancel button of the file chooser dialog box).

2. A sequence of commands

DocBook has no ``bold tag'' but it is customary to use the emphasis element with attribute role equals
to bold. The following macro automates this:

<command name="convertToBold">

 <macro repeatable="true" undoable="true"

 label="Convert to Bold">

 <sequence>

 <command name="convert"

 parameter="[implicitElement] emphasis" />

 <command name="putAttribute" parameter="role bold" />

 </sequence>

 </macro>

</command>

Using a sequence [27] element:

1. The macro converts anything convertible to an emphasis element (generally text selection, but not
only text selection) to an emphasis element.

2. If step #1 is successful, the macro adds attribute role with value bold to the newly created emphasis
element.

Note that if the first step of a sequence cannot be executed (this is tested before attempting to actually
execute the sequence construct), the whole sequence construct cannot be executed.

Step #2 works without an "[implicitElement]" parameter for command putAttribute [130] because
the newly created emphasis element has been automatically selected by the convert [90] command of
step #1.

6

Writing macro-commands

This is often the case. A quick way to learn this is to first perform interactively what needs to be automated
by the macro.

3. Alternative commands

The above macro needs to be refined. If an emphasis element is implicitly or explicitly selected and
this element has no role attribute or a role different from bold, we would like to add to it attribute
role with value bold.

The following macro uses a choice [27] element to do this:

<command name="convertToBold2">

 <macro repeatable="true" undoable="true"

 label="Convert to Bold">

 <sequence>

 <choice>

 <command name="selectNode"

 parameter="self[implicitElement] emphasis" />

 <command name="convert"

 parameter="[implicitElement] emphasis" />

 </choice>

 <command name="putAttribute" parameter="role bold" />

 </sequence>

 </macro>

</command>

The choice [27] element will execute the first alternative which can be executed:

• Explicitly selecting (using command selectNode [147]) the emphasis element if such element is im-
plicitly (or explicitly) selected;

• OR converting anything else to an emphasis element, using command convert [90].

If all alternatives cannot be executed (this is tested before attempting to actually execute the choice
construct), the whole choice construct cannot be executed.

4.Testing if a command can be executed

The following macro inserts a br, an XHTML line break element, at caret position. If there is no text
node after the newly inserted br, the macro inserts a new text node in order to let the user continue to
type text. This macro is typically bound to a keystroke such as Shift+Enter.

The problem is that we don't want to insert a new text node after a br inserted in text span elements such
as b, i, em, strong, a, etc, but only after a br inserted in a text block such a p, li, etc.

Command selectNode [147] can, not only blindly select nodes, but it can also select nodes conditionally,
if theses nodes match a list of elements passed as a parameter string.

Therefore the idea is to use selectNode [147], not for its ability to select nodes, but for its ability to test
where the caret is.

The pass [125] and fail [107] constructs have designed to do this: test if a command can be executed
without actually executing it.

7

Writing macro-commands

<command name="insertLineBreak">

 <macro>

 <sequence>

 <command name="insert"

 parameter="into {http://www.w3.org/1999/xhtml}br" />

 <sequence>

 <pass><command name="selectNode"

 parameter="parent {http://www.w3.org/1999/xhtml}p

 {http://www.w3.org/1999/xhtml}li

 {http://www.w3.org/1999/xhtml}dt

 {http://www.w3.org/1999/xhtml}dd

 {http://www.w3.org/1999/xhtml}th

 {http://www.w3.org/1999/xhtml}td"/></pass>

 <command name="insertNode" parameter="textAfter" />

 <command name="cancelSelection" />

 </sequence>

 </sequence>

 </macro>

</command>

If selectNode can be executed, then the pass construct can be executed, then the whole sequence can be
executed.

Note that when the pass construct is actually executed, it does nothing at all. This is good because, in
our example, if selectNode was actually executed, it would have selected, say a p or a li, after which
you generally cannot add a text node (moreover adding a text node after the p or li is not what we want
to do).

The last step of the sequence, cancelSelection [88], is just a refinement which removes the ``red border''
around the newly inserted text node.

5.The "%_" variable

Few commands return a result to their invocation environment (here the invocation environment is the
macro).

Command run [137] is one of the few commands really designed to return a value: it executes an external
command, for example dir on Windows (ls on Unix), and it captures what is printed on the console to
return it as its result.

The following macro is used to run an external command (user is prompted to specify it) and then, to
insert at caret position the text which is the result of the external command.

<command name="insertCommandOutput">

 <macro>

 <sequence>

 <command name="run" />

 <command name="insertString" parameter="%_" />

 </sequence>

 </macro>

</command>

8

Writing macro-commands

Command insertString [121] can insert text at caret position. But how to pass to command insertString
what has been returned by command run? The answer is: use variable "%_".

Each time a command (or a sequence, or a choice) is executed inside a macro, the result of the executed
command (or construct) is used to assign a predefined variable which referenced as "%_" in command
parameters.

When executed command does not return a result, variable "%_" is cleared. A reference in a command
parameter to a cleared "%_" is replaced by the empty string.

The sequence and choice constructs, which can be considered as being pseudo-commands, can return
results too:

sequence

Returns the result of its last step.

choice

Returns the result of its executed alternative.

The pass and fail constructs are just tests. They have no effect on "%_". That is, they return the result of
the last executed command or construct.

6. Macro-variables

Variables which are referenced as "%variable_name" are macro-variables. They are referenced in the
parameter of commands. They are substituted with their values before the command (or construct) is
tested for execution and before the command (or construct) is actually executed.

We have already studied the "%_" variable. There are other macro-variables [9]: "%0", "%1", "%*", "%d",
etc.

Note that all macro-variables are predefined, which means that there is no way for a user to define its
own macro-variables in its custom macros.

The following macro pastes after explicitly or implicitly element, the content of the clipboard after
parsing this content as paragraphs. For example, if the clipboard contains several lines of text, each line
can be converted to a paragraph. Such macro is useful to convert legacy documents to XML documents.

This macro is built using a sequence of commands formatTextAs [108] and paste [125].

<command name="insertAfterAs">

 <macro>

 <sequence>

 <command name="formatTextAs" parameter="%0" />

 <command name="paste"

 parameter="after[implicitElement] %_" />

 </sequence>

 </macro>

</command>

<!-- template(para,PAA.para) is defined in the stock

 DocBook 4 configuration. -->

9

Writing macro-commands

<binding>

 <keyPressed code="F5" />

 <command name="insertAfterAs"

 parameter="#template(para,PAA.para)" />

</binding>

Command formatTextAs has a mandatory parameter string which must be used to specify which para-
graph element to create: is it XHTML p? Is it DocBook para? Is it DocBook simpara? Etc.

Macro insertAfterAsParagraphs has been made as generic as command formatTextAs because it
must be passed a parameter string specifying which paragraph elements to create. This question is simply:
how to reference the parameter string passed to a macro inside this macro? The answer is: use following
macro-variables:

%*

is the value of the whole parameter string.

%0, %1, %2, ..., %9

are parts of the parameter string, split like what is done for command line arguments. For example,
if parameter string is:

foo 'bar is a gee' "gee is a wiz"

%0 is "foo", %1 is "bar is a gee", %2 is "gee is a wiz" and %3, ..., %9 are substituted with the
empty string.

7. Simple use of named variables

The following macro is used to insert a DocBook ulink element at caret position, the URL referenced
by the inserted ulink being chosen from a predefined list.

Command pick [128] has been created to display a dialog box which lets the user choose one item from
a list. This command returns the selected item (a string) to its invocation environment.

Command pick can always be executed, but it returns a special value when the user has canceled its
execution by clicking on the Cancel button of its dialog box.

<command name="insertFamousUlink">

 <macro undoable="true" label="Insert Favorite">

 <sequence>

 <command name="pick"

 parameter="Favorites true

 W3C

 http://www.w3.org/

 'DocBook Home Page'

 http://www.docbook.org/

 Java

 http://www.java.com/" />

 <set variable="url" expression="%_" plainString="true" />

 <command name="insert" parameter="into ulink" />

10

Writing macro-commands

 <get expression="$url" />

 <command name="putAttribute" parameter="url %_" />

 <get expression="$url" />

 <command name="insertString" parameter="%_" />

 </sequence>

 </macro>

</command>

The above macro stores the result returned by command pick in a user variable called url. The value
of the url variable is then used twice: one time to set the value of attribute url of element ulink, a
second time to specify the text of element ulink.

Macro variable "%_" is extremely volatile. For example, the following sequence cannot be used to add
attribute url to newly inserted element ulink, because command insert [114], which does not return a
result, clears "%_".

<sequence>

 <command name="pick"

 parameter="Favorites true

 W3C

 http://www.w3.org/

 'DocBook Home Page'

 http://www.docbook.org/

 Java

 http://www.java.com/" />

 <command name="insert" parameter="into ulink" />

 <command name="putAttribute" parameter="url %_" />

</sequence>

The only easy way to reuse what has been returned by command pick [128] is to immediately save the
value of "%_" in a user-defined variable.

User-defined variables are not related to macro-variables. They are set using special construct set [28]
and are read using special construct get [28]. These constructs have expression attributes which have
been designed to contain arbitrarily complex XPath expressions (more info. about this in following
sections).

The above macro illustrates a trivial use of set [28] and get [28]. This means that you don't need to
learn XPath to use set [28] and get [28] to do simple things. However, it is important to remember this:

• User-defined variables cannot be referenced in constructs other than set [28], get [28], test [28]
and match [27].

For example, it is not possible to directly write:

<command name="putAttribute" parameter="url $url" />

<command name="insertString" parameter="$url" />

In such case, the get [28] construct must be used because it is the only way to return in "%_" the value
of "$url".

11

Writing macro-commands

???
http://www.w3.org/TR/xpath

• Do not forget to add plainString=true to element set. Otherwise, the value of attribute expression
is understood as being an XPath expression.

• Do not use the following names for your variables because they have a special meaning (more info.
about this in following sections): implicitElement, selectedElement, implicitNode, selected-
Node, selectedChars, selectedNodes, selected, selected2, dot, dotOffset, mark, markOffset.

8. General use of get

At this point of the tutorial, you'll need to know the XPath standard to understand what follows.

The following macro is used to display in an external image viewer, the image referenced in the fileref
attribute of explicitly or implicitly selected DocBook elements graphic or imagedata.

The image viewer used by this macro is an external program called gimp. It is launched using command
start [157].

<command name="startImageViewer">

 <macro>

 <sequence>

 <get context="$implicitElement/@fileref"

 expression="uri-to-file-name(resolve-uri(.))" />

 <command name="start" parameter='gimp "%_"' />

 </sequence>

 </macro>

</command>

The above macro shows how to use get [28] at its best:

1. First the context attribute, common to all XPath-based constructs get [28], set [28], test [28] and
match [27], is evaluated as a node set, using the document as a context node.

2. The expression attribute, common to get [28], set [28] and test [28], is evaluated as a string using
the context node found in previous step.

If get [28], set [28], test [28] or match [27] have no context attribute, the context node used to
evaluate expression is the document node itself (that is, XPath "/").

The context attribute contains "$implicitElement/@fileref" which means attribute fileref of
explicitly or implicitly selected element, because implicitElement is a predefined variable [31] mapped
to explicitly or implicitly selected element (more info. about this in next section).

The expression attribute contains "uri-to-file-name(resolve-uri(.))". "." is the fileref attribute
node. resolve-uri() in XMLmind XML Editor - Support of XPath 1.0 and uri-to-file-name() in XMLmind
XML Editor - Support of XPath 1.0 are two non-standard XPath functions which are used to resolve a
relative URL and then to convert this URL to a file name (xv will not work if passed an URL).

9. Variables mapped to the selection in XXE

The following macro can be used to move a DocBook list item (listitem, callout or step) down in
the list. How to move a DocBook list item up in the list can be found in Example 4.5, “Using the XPath-
based constructs match and set” [40].

12

Writing macro-commands

???
http://www.w3.org/TR/xpath
../xpathsupport/xpathsupport.pdf#resolve-uri
../xpathsupport/xpathsupport.pdf#uri-to-file-name

<command name="moveListItemDown">

 <macro undoable="true" label="Move List Item Down">

 <sequence>

 <command name="selectNode"

 parameter="ancestorOrSelf[implicitElement] listitem callout step" />

 <match context="$selected" pattern="*[position() < last()]" />

 <set variable="anchor" context="$selected"

 expression="./following-sibling::*[1]" />

 <command name="cut" />

 <set variable="selected" expression="$anchor" />

 <command name="paste" parameter="after" />

 </sequence>

 </macro>

</command>

This step ensures that the macro can be executed only inside a list item.

This step ensures that the macro cannot be executed for last list item.

It uses the XPath-based construct match [27]. As a pseudo-command of a macro, it can be executed
only if the context node specified in its context attribute matches the XSLT pattern specified in
its pattern attribute.

This construct like pass [125], fail [107] and test [28], is only a test. When match [27] is actually
executed, it does nothing at all.

This step saves in user variable named anchor, the list item which follows the selected list item.

Variable selected referenced from the context attribute of this set construct is, like implicitEle-
ment seen in previous example, one of the many predefined variables mapped to the selection in
XXE [31]:

• Reading variable selected returns the node, first selected in the node selection, whatever is its
type.

• Writing variable selected clears current node selection or current text selection if any, and
then, explicitly selects specified value (which must be a node set).

Cut selected list item.

Select the list item saved in variable anchor: ``the following one''.

The selection is changed by assigning a node value to predefined variable selected, as explained
above.

Paste the list item found in the clipboard after last selected list item.

10. Contextual commands

The following macro swaps the character before the caret with the character after the caret. It is useful
if, like everybody, you are a bit dyslexic.

13

Writing macro-commands

http://www.w3.org/TR/xslt

<command name="transposeChars">

 <macro undoable="true" label="Transpose Characters">

 <sequence>

 <test expression="not($selected) and not($mark) and

 $dotOffset > 0 and

 $dotOffset < string-length($dot)"/>

 <command name="selectTo" parameter="previousChar" />

 <command name="cut" />

 <command name="moveDotTo" parameter="nextChar" />

 <command name="paste" parameter="into" />

 </sequence>

 </macro>

</command>

The above macro uses basic commands selectTo [152], moveDotTo [123], cut [93] and paste [125], but
also XPath-based construct test [28].

As a pseudo-command of a macro, test [28] can be executed only if its expression attribute evaluated
as a boolean in the context specified by its context attribute returns true.

This construct like pass [125], fail [107] and match [27], is only a test. When test [28] is actually executed,
it does nothing at all.

Test is used in the above macro to ensure that the macro can be executed only if:

• There is no node selection: not($selected).

• There is no text selection: not($mark).

• The caret is not before first character of a textual node: $dotOffset > 0.

• The caret is not after last character of a textual node: $dotOffset < string-length($dot).

Like selected and implicitElement seen in previous examples, mark, dot and dotOffset are pre-
defined variables mapped to the selection in XXE [31].

14

Writing macro-commands

Part II. Reference

Table of Contents
3. Menu commands ... 20

1. Reference .. 20
2. Redefining or extending the right-click, contextual, popup menu 21

4. Macro commands .. 25
1. Reference .. 25

1.1. Pass and fail cheat sheet .. 29
1.2. Macro-variables .. 29
1.3. XPath variables ... 31

1.3.1. User variables .. 31
1.3.2. Predefined variables ... 31

2. Running XED scripts in a macro ... 34
3. Examples .. 38

5. Process commands ... 44
1. Reference .. 44

1.1. Attributes ... 49
1.2. Element copyDocument ... 49

1.2.1. Attributes ... 50
1.2.2. Element extract ... 51
1.2.3. Element resources .. 54

1.3. Element convertImage ... 56
1.3.1. Parameters supported by the built-in Java image toolkit 58

1.4. Element copyProcessResources .. 58
1.5. Element transform .. 60

1.5.1. Using a custom XSLT style sheet .. 62
1.6. Element processFO .. 63
1.7. Element upload .. 64
1.8. Element post ... 65
1.9. Element read ... 67
1.10. Element mkdir .. 67
1.11. Element rmdir .. 68
1.12. Element delete .. 68
1.13. Element copy .. 68
1.14. Element zip ... 69
1.15. Element jar ... 70
1.16. Element shell .. 71
1.17. Element invoke .. 73
1.18. Element subProcess ... 75
1.19. Process variables ... 75

2. Commented examples .. 78
2.1. Convert explicitly or implicitly selected para to a formalpara 78
2.2. Convert a DocBook document to RTF .. 79
2.3. Convert ImageDemo document to HTML ... 82

6. Commands written in the Java™ programming language .. 84
1. alert .. 85
2. add ... 86
3. addAttribute .. 86
4. addBlockInFlow .. 86
5. autoSpellChecker ... 88
6. beep .. 88
7. cancelSelection .. 88

16

8. center .. 89
9. checkValidity .. 89
10. confirm ... 89
11. contextualMenu ... 90
12. convert .. 90
13. convertCase ... 91
14. copy .. 91
15. copyAsInclusion .. 92
16. copyChars ... 92
17. copyImage ... 93
18. cut .. 93
19. declareNamespace ... 93
20. demoteListItem .. 94

20.1. Configuring the promoteListItem and demoteListItem commands 94
21. delete .. 97
22. deleteChar ... 97
23. deleteSelectionOrDeleteChar .. 98
24. deleteSelectionOrJoinBlockOrDeleteChar ... 98
25. deleteWord .. 98
26. diffSupport .. 99
27. drag .. 100
28. drop .. 100
29. editAttribute .. 101
30. editAttributes ... 102
31. editObject .. 102
32. editPITarget ... 103
33. editMediaInfo .. 103
34. ensureSelectionAt .. 104
35. execute .. 105
36. executeMenuItem ... 105
37. extendSelectionAt .. 106
38. extractObject ... 107
39. fail .. 107
40. formatTextAs ... 108

40.1. Specifying an element template for use by command formatTextAs 108
40.2. Filtering the text pasted in the document ... 112

41. include .. 112
42. insert ... 114
43. insertCharByName ... 114
44. insertCharSequence .. 116
45. insertControlChar .. 117
46. insertNewlineOrSplitBlock ... 117
47. insertNode ... 118
48. insertOrOverwriteString ... 119
49. insertSpecialChars ... 119
50. insertSameBlock .. 119

50.1. Specifying splittable blocks ... 120
51. insertString .. 121
52. insertTextOrMoveDot ... 121
53. join ... 121
54. listAnchors .. 122
55. listBindings ... 122

17

Reference

56. listPlugins ... 122
57. listRepeatable .. 122
58. moveDotTo .. 123
59. moveElement ... 123
60. normalizeWhiteSpacePre .. 123
61. overwriteMode .. 124
62. overwriteString .. 124
63. pass ... 125
64. paste ... 125
65. pasteAs ... 126
66. pasteImageAs .. 127
67. pasteSystemSelection ... 127
68. pick ... 128
69. preview ... 128
70. promoteListItem .. 129
71. prompt .. 129
72. putAttribute ... 130
73. recordMacro .. 131
74. redo .. 132
75. refresh ... 132
76. reinclude ... 132
77. remark ... 133
78. removeAttribute ... 134
79. repeat .. 134
80. replace .. 134
81. resizeImage ... 134
82. resizeTableTemplate ... 136
83. resizeCALSTableTemplate ... 137
84. run .. 137
85. search .. 138
86. searchReplace .. 140
87. searchReplaceElement .. 140
88. selectAt ... 142
89. selectFile ... 142
90. selectConvertedFile .. 143
91. selectLink .. 146
92. selectNode ... 147

92.1. List of element names or node types ... 150
92.2. OrNone, OrNode, OrElement modifiers .. 150

93. selectNodeAt ... 151
94. selectText .. 151
95. selectTo ... 152
96. setProperty .. 152
97. setReadOnly .. 153
98. setObject ... 154
99. showContentModel .. 155
100. showElementReference .. 155
101. showMatchingChar .. 155
102. showColumnRowLabels ... 156
103. spellCheck ... 157
104. split ... 157
105. start ... 157

18

Reference

106. status ... 157
107. toggleCollapsed ... 157
108. toggleTextStyle .. 159
109. undo .. 161
110. uninclude ... 161
111. updateInclusions .. 161
112. viewObject .. 161
113. webSearch ... 163

113.1. Declaring search engines ... 163
114. wrap .. 164
115. xIncludeText .. 165
116. xpathSearch ... 165
117. XXE.close ... 166
118. XXE.compare .. 166
119. XXE.edit ... 167
120. XXE.editInclusion ... 168
121. XXE.masterDocumentControl .. 168
122. XXE.new ... 170
123. XXE.open .. 171
124. XXE.save .. 172
125. XXE.saveAll .. 173
126. XXE.setReadOnly .. 174
127. XXE.saveAs .. 175
128. A generic, parameterizable, table editor command .. 175

19

Reference

Chapter 3. Menu commands

1. Reference

<command

name = NMTOKEN (optionally preceded by

 a command namespace in XMLmind XML Editor - Configuration and Deployment)

>

Content: class | menu | macro | process

</command>

<menu

 label = non empty token

>

 Content: [menu | separator | item]+

</menu>

<separator

/>

<item

label = non empty token

 icon = anyURI

command = NMTOKEN (optionally preceded by

 a command namespace in XMLmind XML Editor - Configuration and Deployment)

 parameter = string

/>

Define a popup menu of commands. This special type of command, typically invoked from contextual
macro-commands, allow to redefine or extend the right-click, contextual, popup menu. See below [21].

The parameter passed to a command containing a menu may be used to parameterize the items of this
menu. This parameter is split like in a command line. A part of the split parameter may be referenced
as variable %0, %1, %2, ..., %9. Variable %* may be used to reference the whole parameter of the command.

Note that the %-variable substitution is performed on in the label and in the parameter attributes of
an item element. There is no %-variable substitution in the command attribute.

Example:

<command name="greetings">

 <menu>

 <item label="Say '%0'"

 command="alert" parameter="%0"/>

 <item label="Say '%1'"

 command="alert" parameter="%1"/>

 </menu>

</command>

Invoking <command name="greetings" parameter="'Hello world!' 'Goodbye world.'"/> displays
a popup menu equivalent to:

20

../configure/configure.pdf#command_names
../configure/configure.pdf#command_names

<menu>

 <item label="Say 'Hello world!'"

 command="alert" parameter="Hello world!"/>

 <item label="Say 'Goodbye world.'"

 command="alert" parameter="Goodbye world."/>

</menu>

The binding configuration element (see Section 3, “binding” in XMLmind XML Editor -
Configuration and Deployment) also has a menu child element. However menu commands
are more useful because:

• They can be bound to a keystroke. Popup menus in binding can only be bound to a mouse
click.

• The parameter passed to the command may be used to parameterize the items of the menu.
• They can be used to redefine or extend the right-click, contextual, popup menu.

2. Redefining or extending the right-click, contextual, popup menu

The right-click, contextual, popup menu is displayed by a command called contextualMenu [90]. In
order to determine the content of this popup menu, the contextualMenu command proceeds as follows:

1. contextualMenu attempts to execute in order (see below [22]) all the commands found in the
"current_configuration_name contextualMenu" namespace. If, given the current context, one of such
commands can be executed, then this command is expected to display a custom menu replacing the
“standard” right-click, contextual, popup menu. Therefore, once this command is executed, contex-
tualMenu ends its work at this point.

2. contextualMenu attempts to execute in order all the commands found in the "contextualMenu"
namespace. If, given the current context, one of such commands can be executed, then this command
is expected to display a custom menu replacing the “standard” right-click, contextual, popup menu.
Therefore, once this command is executed, contextualMenu ends its work at this point.

3. contextualMenu attempts to execute in order all the commands found in the "current_configura-
tion_name contextualMenuItems" namespace. If, given the current context, one of such commands
can be executed, then this command is expected to display a custom menu contributing some menu
items to the “standard” right-click, contextual, popup menu. Therefore, once this command is executed,
contextualMenu captures the menu items (without displaying any popup menu at this stage) and
proceeds with the next command found in in the "current_configuration_name contextualMenuItems"
namespace.

4. contextualMenu attempts to execute in order all the commands found in the "contextualMenuItems"
namespace. If, given the current context, one of such commands can be executed, then this command
is expected to display a custom menu contributing some menu items to the “standard” right-click,
contextual, popup menu. Therefore, once this command is executed, contextualMenu captures the
menu items (without displaying any popup menu at this stage) and proceeds with the next command
found in in the "contextualMenuItems" namespace.

5. contextualMenu displays the “standard” right-click, contextual, popup menu. This menu contains
all the items collected during step #3 and step #4.

21

Menu commands

../configure/configure.pdf#binding

The invocation order of the commands belonging to a given namespace is the lexical order of the local
names of the commands. For example, command {My Config contextualMenuItems}barMenuItems
is invoked before command {My Config contextualMenuItems}fooMenuItems.

By default, XXE attempts to execute the equivalent of the following command during step #2:

<command name="{contextualMenu}AutoSpellMenu">

 <sequence>

 <command name="autoSpellChecker"

 parameter="popupMenu"/>

 </sequence>

</command>

More information about command autoSpellChecker [88].

By default, XXE attempts to execute the equivalent of the following command during step #4:

<command name="{contextualMenuItems}xxeEditMenuItems">

 <menu>

 <item label="Repeat"

 command="repeat"/>

 <separator/>

 <item label="Cut"

 command="cut" parameter="[implicitElement]"/>

 <item label="Copy"

 command="copy" parameter="[implicitElement]"/>

 <item label="Paste Before"

 command="paste" parameter="before[implicitElement]"/>

 <item label="Paste"

 command="paste" parameter="toOrInto"/>

 <item label="Paste After"

 command="paste" parameter="after[implicitElement]"/>

 <item label="Delete"

 command="delete" parameter="[implicitElement]"/>

 <separator/>

 <item label="Replace..."

 command="replace" parameter="[implicitElement]"/>

 <item label="Insert Before..."

 command="insert" parameter="before[implicitElement]"/>

 <item label="Insert Into..."

 command="insert" parameter="into"/>

 <item label="Insert After..."

 command="insert" parameter="after[implicitElement]"/>

 <item label="Convert..."

 command="convert" parameter="[implicitElement]"/>

 <item label="Wrap..."

 command="wrap" parameter="[implicitElement]"/>

 </menu>

</command>

22

Menu commands

Example 3.1. Whatever the configuration, add extra menu items to the right-click, contextual, popup
menu

<command name="{contextualMenuItems}xxeExtraMenuItems">

 <menu>

 <item label="Split" command="split" />

 <item label="Join" command="join" />

 </menu>

</command>

More information about commands split [157] and join [121].

If you want to the give the above snippet a try, add it to your customize.xxe file.

Example 3.2. DITA topic configuration: when an image is selected, allow to edit it using a helper
application

<command name="{$c contextualMenuItems}editImageMenuItem">

 <macro>

 <sequence>

 <match context="$selectedElement"

 pattern="image[@href and @href != '???']" />

 <command name="{dita}editImageMenuItem" />

 </sequence>

 </macro>

</command>

<command name="{dita}editImageMenuItem">

 <menu>

 <item label="Edit image"

 command="editObject"

 parameter="href anyURI" />

 </menu>

</command>

"$c" is a shorthand for the name of the current configuration ("DITA" in the case of the above
command).

The "Edit image" item is added to the popup menu only if an image element having an href at-
tribute is explicitly selected.

A macro-command such as "{DITA contextualMenuItems}editImageMenuItem" may not have
a menu child element element, hence the need to define helper command {dita}editImageMenu-
Item.

More information about command editObject [102].

If you want to the give the above snippet a try, add it to XXE_install_dir/addon/config/dita/topic.xxe.

23

Menu commands

Example 3.3. Any of the two XHTML 1.0 configurations: when some text is selected, display a special,
simpler, popup menu

<command name="{$c contextualMenu}textMenu">

 <macro>

 <sequence>

 <test expression="$selectedChars" />

 <command name="{xhtml}textMenu" />

 </sequence>

 </macro>

</command>

<command name="{xhtml}textMenu">

 <menu>

 <item label="Cut" command="cut" />

 <item label="Copy" command="copy" />

 <item label="Paste"

 command="paste" parameter="to"/>

 <separator/>

 <item label="Convert to b"

 command="convert"

 parameter="{http://www.w3.org/1999/xhtml}b"/>

 <item label="Convert to i"

 command="convert"

 parameter="{http://www.w3.org/1999/xhtml}i"/>

 <item label="Convert to tt"

 command="convert"

 parameter="{http://www.w3.org/1999/xhtml}tt"/>

 </menu>

</command>

"$c" is a shorthand for the name of the current configuration ("XHTML Transitional" or "XHTML
Strict").

The “standard” right-click, contextual, popup menu is replaced by textMenu only if some text is
selected.

A macro-command such as "{XHTML Transitional textMenu}" may not have a menu child element
element, hence the need to define helper command {xhtml}textMenu.

More information about commands cut [93], copy [91], paste [125], convert [90].

If you want to the give the above snippet a try, add it to XXE_install_dir/addon/config/xhtml/xhtml_com-
mon.incl.

24

Menu commands

Chapter 4. Macro commands

1. Reference

<command

name = NMTOKEN (optionally preceded by

 a command namespace in XMLmind XML Editor - Configuration and Deployment)

>

Content: class | menu | macro | process

</command>

<macro

 trace = boolean : false

 repeatable = boolean : false

 undoable = boolean : false

 label = non empty token

>

Content: choice | sequence

</macro>

<choice>

Content: [command|sequence|choice|pass|fail|

 match|test|get|set|script]+

</choice>

<sequence>

Content: [command|sequence|choice|pass|fail|

 match|test|get|set|script]+

</sequence>

<command

name = NMTOKEN (optionally preceded by

 a command namespace in XMLmind XML Editor - Configuration and Deployment)

 parameter = string

/>

<pass>

Content: [command|sequence|choice|pass|fail|

 match|test|get|set|script]+

</pass>

<fail>

Content: [command|sequence|choice|pass|fail|

 match|test|get|set|script]+

</fail>

<match

 context = XPath expr. returning a node set : "/"

pattern = XSLT pattern

 antiPattern = boolean : false

/>

25

../configure/configure.pdf#command_names
../configure/configure.pdf#command_names

<test

 context = XPath expr. returning a node set : "/"

expression = XPath expr. returning a boolean

/>

<get

 context = XPath expr. returning a node set : "/"

expression = XPath expr. returning a string

/>

<set

variable = QName

 context = XPath expr. returning a node set : "/"

expression = XPath expression

 plainString = boolean : false

/>

<script

 location = anyURI

 context = XPath expr. returning a node set : "/"

 argument0 = XPath expression

 argument1 = XPath expression

 argument2 = XPath expression

 argument3 = XPath expression

 argument4 = XPath expression

 argument5 = XPath expression

 argument6 = XPath expression

 argument7 = XPath expression

 argument8 = XPath expression

 argument9 = XPath expression

><![CDATA[

XED source

]]></script>

Define, to make it simple, a sequence of native commands, menu commands, process commands or
other macro-commands.

Attributes of macro:

trace

When specified with value true, this attribute causes the macro to print debug information on the
console, which is extremely useful when developing a sophisticated macro.

repeatable

When specified with value true, this attribute marks the macro as being repeatable as a whole.

By default, macros are not marked as being repeatable as a whole because few macros really need
this. For example, macros which are bound to a keystroke don't need to be marked repeatable.

undoable

When specified with value true, this attribute marks the macro as being undoable as a whole.

26

Macro commands

By default, macros are not marked as being undoable as a whole because few macros really need
this. For example, macros which just select text or nodes, macros which are used to invoke process
commands, macros which just perform a single editing action chosen by examining the editing
context, don't need to be marked as undoable.

label

Label used by the GUI (example: the Edit popup menu) to refer to an undoable and/or repeatable
macro-command.

If attribute label is not specified, a label is automatically generated by ``beautifying'' the name
under which the macro-command has been registered.

Example 1: label "Transpose chars" is used for macro "transposeChars".

Example 2: label "Move list item down" is used for macro "docb.moveListItemDown". In this
case, simple rules are used to recognize "docb." as a prefix and therefore to discard it from the
generated label.

Simple child elements of macro:

sequence

Can be executed if its first child can be executed (See Execution of a command [5]). Executes all
its children one after the other.

Returns the result of its last child.

choice

Can be executed if any of its children can be executed. Execute the first child that can be executed.

Returns the result of its executed child.

pass

Can be executed if all its children can be executed. Execution does nothing at all: this element is
just a test.

See pass and fail cheat sheet [29].

Returns the result of the last executed get, sequence, choice or command (that is, does not change
%_).

fail

Can be executed if any of its children cannot be executed. Execution does nothing at all: this element
is just a test.

Fail is the negation of pass. See pass and fail cheat sheet [29].

Returns the result of the last executed get, sequence, choice or command (that is, does not change
%_).

XPath-based child elements of macro:

match

Can be executed if specified pattern can be parsed and matches specified context node. Execution
does nothing at all: this element is just a test.

27

Macro commands

http://www.w3.org/TR/xpath

If attribute antiPattern is specified with value true, this pseudo-command can be executed if the
context node does not match specified pattern.

Returns the result of the last executed get, sequence, choice or command (that is, does not change
%_).

The context and pattern attributes can contain references to variables: user variables or variables
mapped to the selection in XXE. See XPath variables [31].

test

Can be executed if specified expression can be parsed and evaluates to true() given specified
context node. Execution does nothing at all: this element is just a test.

Returns the result of the last executed get, sequence, choice or command (that is, does not change
%_).

The context and expression attributes can contain references to variables: user variables or variables
mapped to the selection in XXE. See XPath variables [31].

get

Can be executed if specified expression can be parsed and evaluated given specified context node.
Execution returns the string value of specified expression.

The context and expression attributes can contain references to variables: user variables or variables
mapped to the selection in XXE. See XPath variables [31].

set

Can be executed if specified expression can be parsed and evaluated given specified context node.
Execution assigns to specified variable the value of specified expression.

Attribute variable specifies the qualified name of the variable to be assigned.

Do not specify: <set variable="$x" expression="2+2"/>. Specify: <set vari-
able="x" expression="2+2"/>.

If attribute plainString is specified with value true, attribute expression is considered to contain
a plain string rather than an XPath expression. In this case, expression is not evaluated before being
assigned to the variable.

Returns nothing at all (that is, clears %_).

The context and expression attributes can contain references to variables: user variables or variables
mapped to the selection in XXE. See XPath variables [31].

script

See Section 2, “Running XED scripts in a macro” [34].

For the above XPath-based elements, the context node is the result of the context expression (evaluated
using the document as its own context node).

If the context expression is not specified, the context node is the document itself.

28

Macro commands

If this context expression evaluates to multiple nodes, the context node is the first node of the node set
in document order.

If this context expression evaluates to anything other than a node set, the match, test, get, set and
script pseudo-commands cannot be executed.

If this context expression evaluates to a node which is not attached to a document or which is attached
to a document other than the one for which the macro-command is executed, the match, test, get, set
and script pseudo-commands cannot be executed.

1.1. Pass and fail cheat sheet

pass can be executed if A and B can be executed.passAB

pass can be executed if A can be executed.passsequenceAB

pass can be executed if A or B can be executed.passchoiceAB

fail can be executed if A or B cannot be executed.failAB

fail can be executed if A cannot be executed.failsequenceAB

fail can be executed if A and B cannot be executed.failchoiceAB

1.2. Macro-variables

The parameter of a command C contained in the macro-command can contain variables. These variables
are substituted with their values before executing command C.

Macro-variable substitution is also performed in the context, pattern and expression attributes of
the match, test, get, set pseudo-commands.

Excerpt of Example 4.2, “Macro-variables” [39] below: <command name="putAttribute" paramet-
er="%0 %1"/>.

DescriptionVariable

A macro-command can have a parameter. This string is split like
in a command line. A part of the split parameter can be referenced
as variable %0, %1, %2, ..., %9.

%0, %1, %2, ..., %9, %*

%* can be used to reference the whole parameter of the macro-
command.

%D is the file name of the document being edited. Example:
C:\novel\chapter1.xml.

%D, %d

This variable is replaced by an empty string if the document being
edited is found on a remote HTTP or FTP server.

%d is the URL of the document being edited. Example:
file:///C:/novel/chapter1.xml.

%P is the name of the directory containing the document being edited.
Example: C:\novel.

%P, %p

29

Macro commands

DescriptionVariable

This variable is replaced by an empty string if the document being
edited is found on a remote HTTP or FTP server.

%p is the URL of the directory containing the document being edited.
Example: file:///C:/novel.

Note that this URL does not end with a '/'.

%N is the base name of the document being edited. Example:
chapter1.xml.

%N, %R, %E

%R is the base name of the document being edited without the ex-
tension, if any (sometimes called the root name). Example:
chapter1.

%E is the extension of the document being edited, if any. Example:
xml.

Note that the extension does not start with a '.'.

Similar to %N, %R, %E except that these variables contain properly
escaped URI components. For example if %R contains "foo bar",
then %r contains "foo%20bar".

%n, %r, %e

%S is the native path component separator of the platform. Example:
'\' on Windows.

%S

User's account name. Example: john.%U

%H is the user's home directory. Example: /home/john.

%h is the URL of the user's home directory. Example:
file:///home/john.

%H, %h

Note that this URL does not end with a '/'.

%A is the user's preferences directory. Example:
/home/john/.xxe10.

%a is the URL of the user's preferences directory. Example:
file:///home/john/.xxe10.

%A, %a

Note that this URL does not end with a '/'.

%X (or %W) is the name of the user's current working directory (that
is, the current working directory of XXE). Example:
C:\Users\john\Documents\report.

%X (or %W), %x (or %w)

%x (or %w) is the URL of the user's current working directory. Ex-
ample: file:///C:/Users/john/Documents/report.

Note that this URL does not end with a '/'.

%C is the name of the directory containing the XXE configuration
file from which the macro command has been loaded. Example:

%C, %c

C:\Program Files\XMLmind_XML_Editor\addon\config\doc-

book.

30

Macro commands

DescriptionVariable

%c is the URL of the above directory. Example: file:///C:/Pro-
gram%20Files/XMLmind_XML_Editor/addon/config/docbook.

Note that this URL does not end with a '/'.

A macro-command can be used to specify a ``pipe'' of commands.%_

If variable %_ is referenced in the parameter of command C contained
in the macro-command, this variable is substituted with the result
of the command executed before C.

Each executed command overwrites %_.

This variable is set to the empty string for commands which do not
return a result.

The "%" character can be escaped using "%%". The above variables can be specified as %{0}, %{1}, ...,
%{R}, %{E}, etc, if it helps (see note about escaped URIs [77]).

In addition to the above variables, a macro-command may reference any Java™ system property or en-
vironment variable. Examples: %{user.home} (for system property user.home), %{HOME} (for environment
variable HOME)

1.3. XPath variables

Totally different from the above macro-variables. A reference to an XPath variable starts with "$" and
can only occur in match, test, get, set.

1.3.1. User variables

A user variable which name has no namespace or which name is in a namespace other than "ht-
tp://www.xmlmind.com/xmleditor/namespace/scope/view" is local to the macro being executed.

A user variable which name is in the "http://www.xmlmind.com/xmleditor/namespace/scope/view"
namespace uses the view of the document as its scope.

This kind of variable is persistent from an invocation of the macro to the other and/or can be shared with
other macros when this macro and/or the other macros are executed in the document view in which the
variable has been created.

A easy way to remember this is to consider that the name of this kind of variable is implicitly prefixed
with the unique ID of the document view.

1.3.2. Predefined variables

There are many predefined variables, most of them mapped to the selection in the document view in
which the macro is executed.

Read example: <get expression"$selectedChars"/> returns selected text if any, the empty string
otherwise.

31

Macro commands

Write example: <set variable="dotOffset" expression="$dotOffset + 1"/> moves the caret
by one character to the right.

WriteReadValueVariable

N/AElement on which the user has
clicked. If the user has clicked on a

elementc l i c k -
e d E l e -
ment text node, then this variable contains

its parent element.

Can only be used when the macro-
command is bound to a mouse click
or an application event with an ori-
gin point such as drop.

N/ANode on which the user has clicked.nodecl icked-
Node

Can only be used when the macro-
command is bound to a mouse click
or an application event with an ori-
gin point such as drop.

Copies string value to the system
clipboard.

String contained in the system clip-
board if any, the empty string other-
wise.

stringclipboard

Moves caret at the beginning of spe-
cified textual node.

Textual node containing the caret.

Empty node set if the document does
not contain text, comments or PIs.

text, com-
ment or PI
node

dot

Moves caret to specified offset.Offset of the caret within the textual
node containing it.

integerdotOffset

First offset is 0. Last valid offset is
after last character.

-1 if the document does not contain
text, comments or PIs.

N/ATrue if there is an explicit text or
node selection; false otherwise.

booleanhasExpli-
citSelec-
tion

Selects specified element.Implicitly or explicitly selected ele-
ment.

elementi m p l i -
c i t E l e -
ment If the value of the variable is not a

valid node seta, clears the node selec-
tion.

Empty node set if there is no node
selection or if multiple nodes are
selected or if the selected node is not
an element.

Selects specified node.Implicitly or explicitly selected
node.

nodeimplicit-
Node

If the value of the variable is not a
valid node seta, clears the node selec-
tion.

Empty node set if there is no node
selection or if multiple nodes are
selected.

32

Macro commands

WriteReadValueVariable

Clears the node selection. Moves the
``mark of text selection'' at the begin-
ning of specified textual node.

Textual node containing the ``mark
of text selection'' (text selection is
between dot and mark).

text, com-
ment or PI
node

mark

Specified offset is adjusted if it is
outside the valid offset range.

Empty node set if there is no text
selection.

If the value of the variable is not a
valid node seta, clears the text selec-
tion.

Moves the ``mark of text selection''
to specified offset. Does nothing if
there is no ``mark of text selection''.

Offset of the ``mark of text selec-
tion'' within the textual node contain-
ing it.

integermarkOff-
set

Specified offset is adjusted if it is
outside the valid offset range.

-1 if there is no text selection.

Clears the node and text selections.
Selects specified node.

First selected node in the node selec-
tion (first in document order, not
first selected by user).

nodeselected

If the value of the variable is not a
valid node seta, clears the node selec-
tion.

Empty node set if there is no node
selection.

Extends node selection to specified
node. Does nothing if there is no node

Last selected node in the node selec-
tion (last in document order, not last
selected by user).

nodeselected2

selection or if specified node is not a
sibling of selected nodes.

Empty node set if there is no node
selection or if the node selection
contains a single node.

If the value of the variable is not a
valid node seta, clears the node selec-
tion.

Selects text starting at first textual
node of specified node set and ending

Characters contained in the text se-
lection.

stringselected-
Chars

at last textual node of specified node
set.Empty string if there is no text selec-

tion.
If the value of the variable is not a
valid node seta, clears the text selec-
tion.

Selects specified element.Explicitly selected element.elements e l e c -
t e d E l e -
ment If the value of the variable is not a

valid node seta, clears the node selec-
tion.

Empty node set if there is no node
selection or if multiple nodes are
selected or if the selected node is not
an element.

Selects specified node.Explicitly selected node.nodeselected-
Node

If the value of the variable is not a
valid node seta, clears the node selec-
tion.

Empty node set if there is no node
selection or if multiple nodes are
selected.

33

Macro commands

WriteReadValueVariable

Selects specified nodes. Does nothing
if specified nodes are not adjacent
siblings.

Nodes contained in the node selec-
tion.

Empty node set if there is no node
selection.

node set
containing
s i b l i n g
nodes

selected-
Nodes

If the value of the variable is not a
valid node seta, clears the node selec-
tion.

Copies string value to the system se-
lectionb.

String contained in the system selec-
tionb if any, the empty string other-
wise.

stringsystemSe-
lection

aThe value of the variable must be a non empty node set.

All nodes in this node set must be attached to the document for which the macro is executed.

When a single node is needed, this node is the first node of the node set in document order.
bThe system selection is emulated using a private clipboard on non Unix/X-Window platforms

2. Running XED scripts in a macro

The script element allows to a run a XED script in the context of a macro.

<script

 location = anyURI

 context = XPath expr. returning a node set : "/"

 argument0 = XPath expression

 argument1 = XPath expression

 argument2 = XPath expression

 argument3 = XPath expression

 argument4 = XPath expression

 argument5 = XPath expression

 argument6 = XPath expression

 argument7 = XPath expression

 argument8 = XPath expression

 argument9 = XPath expression

><![CDATA[

XED source

]]></script>

XED is a very small, very simple scripting language, leveraging the native XPath 1.0 implementation
of XMLmind XML Editor, allowing to modify in place the document being edited. The reference
manual of XED is found in Part II, “The XED scripting language” in XMLmind XML Editor - Support
of XPath 1.0.

The source of the script

The source of the XED script may be found inside the script element. In such case, it's strongly recom-
mended to use a CDATA section.

If the source of the XED script is not found inside the script element, then the location attribute is
considered. This attribute must point to an external text file, typically having a .xed extension, containing

34

Macro commands

../xpathsupport/xpathsupport.pdf#xed_scripting

the source of the script. External XED scripts are cached, therefore this is almost no performance penalty
for using external script files.

The main difference between using an internal XED script and using an external XED script is that an
internal XED script automatically inherits all the namespace declarations, except the default namespace
declaration, which are in scope with the script element. Example:

<configuration

 xmlns="http://www.xmlmind.com/xmleditor/schema/configuration"

 xmlns:cfg="http://www.xmlmind.com/xmleditor/schema/configuration">

 ...

 <script>

 ...

 </script>

is equivalent to:

<configuration

 xmlns="http://www.xmlmind.com/xmleditor/schema/configuration"

 xmlns:cfg="http://www.xmlmind.com/xmleditor/schema/configuration">

 ...

 <script>

namespace cfg="http://www.xmlmind.com/xmleditor/schema/configuration";

 ...

 </script>

Storing different scripts in the same XED script file

Note that the URI contained in the location attribute may have a fragment. This fragment specifies the
name of the XED macro-command in XMLmind XML Editor - Support of XPath 1.0 to be executed.

This allows to store different scripts —that is, several unrelated XED macro-commands— in the same
script file. Example: script file hello.xed contains 2 XED macros:

macro sayHello() {

 message("Hello world!");

}

macro sayGoodbye() {

 message("Goodbye world!");

}

The following XXE macro-command allows to invoke sayGoodbye() found in script file hello.xed:

<command name="sayGoodbye">

 <macro>

 <sequence>

 <script location="hello.xed#sayGoodbye" />

 </sequence>

 </macro>

</command>

35

Macro commands

../xpathsupport/xpathsupport.pdf#xed_macro

An equivalent XXE macro-command would be:

<command name="sayGoodbye">

 <macro>

 <sequence>

 <script>

 include "hello.xed";

 sayGoodbye();

 </script>

 </sequence>

 </macro>

</command>

Passing arguments to the script

Attributes argument0 to argument9 are evaluated as XPath expressions in the context of the node spe-
cified using the context attribute. The results of the evaluations are passed to the script by the means
of global variables script-argument0 to script-argument9.

If, for any reason, the evaluation of argumentI fails, the script is nevertheless evaluated. Simply global
variables script-argumentI are not defined. That's why these arguments are typically used as follows:

set-variable("myOption", defined("script-argument7", "off"));

If variable script-argument7 is defined, use its value, otherwise use string "off". See XPath extension
function defined() in XMLmind XML Editor - Support of XPath 1.0.

Returning a value from the script

The result of a script is specified in global variable script-result. The result of a script may be used
in the subsequent commands contained in the macro by the means of the "%_" special variable. If a script
does not set global variable script-result, then this script will not change the value of "%_" special
variable.

Example:

<command name="SayHello">

 <macro>

 <sequence>

 <script>

 set-variable("script-result", "Hello world!");

 </script>

 <command name="alert" parameter="%_"/>

 </sequence>

 </macro>

</command>

36

Macro commands

../xpathsupport/xpathsupport.pdf#defined

Changing the node or text selection from within the script

After it has been run, a script may affect the node or text selection by setting the following global vari-
ables:

DescriptionValueVariable

Selects first node of the node set.node setscript-selected

Extends node selection to the first node of the
node set.

node setscript-selected2

Moves the caret inside the first node of the node
set. This first node must be a textual node of any
kind (text, comment, processing instruction).

node set whose first
node is a textual node

script-dot

Specifies the offset of the caret within the textual
node obtained using variable script-dot.

positive number; de-
faults to 0

script-dot-offset

Move the text selection mark inside the first node
of the node set. This first node must be a textual

node set whose first
node is a textual node

selected-mark

node of any kind (text, comment, processing in-
struction).

Specifies the offset of the text selection mark
within the textual node obtained using variable
script-mark.

positive number; de-
faults to 0

script-mark-offset

It's possible to clear a selection mark of any kind but the caret, by setting the corresponding variable to
an expression which does not evaluate to a node set. Examples: set-variable("script-selected2",
""), set-variable("script-mark", false()).

Otherwise, if the value of any of the above global variables has an unusable type (e.g. for script-dot,
an empty node set or a node set not starting with a textual node), then this variable is simply ignored
and no error is reported.

Setting script-dot (respectively script-mark) without setting script-dot-offset (respectively
script-mark-offset) cause the caret (respectively the text selection mark) to be located at offset 0.

Caveats and pitfalls

• Always insert newly created nodes. Always replace existing nodes by newly created nodes. Never
reuse nodes which have been detached from the document. Use extension function copy() in XMLmind
XML Editor - Support of XPath 1.0 when needed to. If you forget to do so, this is likely to break the
undo manager of the XML editor.

For example, if you need to move an element from one document location to another, first copy the
element to be deleted using copy(), then delete the element, finally insert the copy at the new location.

• If you want to see what's printed by XED command message() in XMLmind XML Editor - Support
of XPath 1.0, you need to set attribute trace to true on the macro element.

37

Macro commands

../xpathsupport/xpathsupport.pdf#copy_nodes
../xpathsupport/xpathsupport.pdf#message

3. Examples

Example 4.1. Using sequence and choice

<command name="addListItem">

 <macro undoable="true">

 <choice>

 <sequence>

 <command name="selectNode"

 parameter="ancestor[implicitElement]

 {http://www.w3.org/1999/xhtml}ul

 {http://www.w3.org/1999/xhtml}ol" />

 <command name="selectNode" parameter="child" />

 <command name="insertNode" parameter="sameElementAfter" />

 </sequence>

 <sequence>

 <choice>

 <sequence>

 <command name="selectNode"

 parameter="ancestorOrSelf[implicitElement]

 {http://www.w3.org/1999/xhtml}dt" />

 <!-- Assumes that a dt is followed by a dd. -->

 <command name="selectNode" parameter="nextSibling" />

 </sequence>

 <command name="selectNode"

 parameter="ancestorOrSelf[implicitElement]

 {http://www.w3.org/1999/xhtml}dd" />

 </choice>

 <command name="insert"

 parameter="after {http://www.w3.org/1999/xhtml}dt" />

 <command name="insert"

 parameter="after {http://www.w3.org/1999/xhtml}dd" />

 <command name="selectNode" parameter="previousSibling" />

 </sequence>

 </choice>

 </macro>

</command>

In the above example , the macro command addListItem, which is used to add a li to a ul or ol or to
add a dt/dd pair to a dl, can be described as follows:

• Select ancestor ul or ol and then

• Select previously select child which is always a li when the document is valid.

(The selectNode command selects all the ancestors one after the other until it reaches the searched
ancestor. This is equivalent to interactively typing Ctrl+Up until the desired ancestor is selected.)

• AND insert element of same type (a new li) after selected element (a li).

• OR select

• next sibling of ancestor dt (assumes that a dt is always followed by a dd);

38

Macro commands

• OR ancestor dd.

Then

• Insert a dt after the selected element (a dd).

• AND insert a dd after the selected element (the newly inserted dt).

• AND select previous sibling (the newly inserted dt) of selected element (the newly inserted dd).

Example 4.2. Macro-variables

<command name="convertToLink">

 <macro undoable="true" repeatable="true" label="Convert to <a>">

 <sequence>

 <command name="convert" parameter="{http://www.w3.org/1999/xhtml}a" />

 <command name="putAttribute" parameter="%0 %1" />

 </sequence>

 </macro>

</command>

<binding>

 <keyPressed code="F3" />

 <command name="convertToLink" parameter="href ???" />

</binding>

<binding>

 <keyPressed code="F3" modifiers="shift" />

 <command name="convertToLink" parameter="name XXX" />

</binding>

In the above example, macro-command convertToLink must be passed two arguments which specify
which type of XHTML a element is to be created: is it target or is it a link? These arguments are referenced
in the parameter of the putAttribute command using variables %0 and %1.

Example 4.3. The "%_" macro-variable

<command name="insertCommandOutput">

 <macro>

 <sequence>

 <command name="run" />

 <command name="insertString" parameter="%_" />

 </sequence>

 </macro>

</command>

In the above example, the output of the external program executed by the run command is referenced
in the parameter of the insertString command using the %_ variable. (The run command having no
parameter will prompt the user to specify which external program is to be executed.)

39

Macro commands

Example 4.4. Using the fail construct

<command name="preview">

 <macro>

 <sequence>

 <pass>

 <match context="/*" pattern="html:html"

 xmlns:html="http://www.w3.org/1999/xhtml" />

 <fail><command name="XXE.save" /></fail>

 </pass>

 <command name="start" parameter="helper(defaultViewer) '%D'" />

 </sequence>

 </macro>

</command>

Start the web browser to preview the current document if it has an html root element and if it does not
need to be saved.

Example 4.5. Using the XPath-based constructs match and set

<command name="moveListItemUp">

 <macro undoable="true" label="Move List Item Up">

 <sequence>

 <command name="selectNode"

 parameter="ancestorOrSelf[implicitElement] listitem callout step" />

 <match context="$selected" pattern="*[position() > 1]" />

 <set variable="anchor" context="$selected"

 expression="./preceding-sibling::*[1]" />

 <command name="cut" />

 <set variable="selected" expression="$anchor" />

 <command name="paste" parameter="before" />

 </sequence>

 </macro>

</command>

Move a list item up in the list. That is, the preceding sibling of the explicitly or implicitly selected list
item becomes its following sibling.

Example 4.6. A contextual drop

<binding>

 <appEvent name="drop" />

 <command name="dropURL" parameter="%{value}" />

</binding>

<command name="dropURL">

 <macro>

 <choice>

 <sequence>

 <match context="$clickedElement" pattern="html:a[@href]"

 xmlns:html="http://www.w3.org/1999/xhtml" />

 <set variable="selected" expression="$clickedElement" />

40

Macro commands

 <get expression="relativize-uri('%0')" />

 <command name="putAttribute" parameter="href '%_'" />

 <command name="status" parameter="Changed href."/>

 </sequence>

 <command name="XXE.open" parameter="%0" />

 </choice>

 </macro>

</command>

When a string is dropped on an XHTML element, this string is assigned to the href
attribute (after considering this string as an URL and trying to make it relative to the base URL of the
a element). When a string is dropped on any other element, XXE default action is used instead: consider
the string as the URL or filename of a document to be opened.

The above macro uses the following XPath extension function: relativize-uri() in XMLmind XML Editor
- Support of XPath 1.0.

Example 4.7. Insert nodes copied from another document

<binding>

 <keyPressed code="F7" />

 <command name="insertFromOtherDoc"

 parameter="into" />

</binding>

<property name="templateFile"

 url="true">VATrates.html</property>

<command name="insertFromOtherDoc">

 <macro>

 <sequence>

 <command name="prompt"

 parameter="Question

 'ID of the element to be inserted at¬

caret position (e.g. germany_vat):'" />

 <set variable="elementId" expression="%_"

 plainString="true" />

 <get expression="serialize(document(system-property(¬

'templateFile'))//*[@id=$elementId])"/>

 <command name="paste" parameter="%0 %_" />

 </sequence>

 </macro>

</command>

The nodes are copied from file VATrates.html. Notice how a property configuration element having
attribute url=true is used to make sure that the URL of the source document VATrates.html is resolved
against the URL of the configuration file containing the macro.

The above macro uses the following XPath extension function: serialize() in XMLmind XML Editor -
Support of XPath 1.0.

41

Macro commands

../xpathsupport/xpathsupport.pdf#relativize-uri
../xpathsupport/xpathsupport.pdf#serialize

Example 4.8. Convert a DocBook 5 para to a formalpara

<command name="paraToFormalpara">

 <macro undoable="true" label="Para to Formalpara">

 <sequence>

 <command name="selectNode"

 parameter="ancestorOrSelf[implicitElement]

 {http://docbook.org/ns/docbook}para" />

 <script context="$selectedElement" ><![CDATA[

 namespace db = "http://docbook.org/ns/docbook";

 set-variable("formalpara",

 <db:formalpara><db:title>TITLE HERE</db:title></db:formalpara>);

 wrap-element($formalpara);

 set-variable("script-selected", $formalpara);

 set-variable("script-dot", ($formalpara//text())[1]);

]]></script>

 </sequence>

 </macro>

</command>

Do not forget to specify undoable="true" when your macro contains a script.

This makes sure that a para is explicitly selected.

The script will not run unless a single element is explicitly selected.

The XED source is directly contained in the script element. When this is the case, do not forget
to use a CDATA section. An alternative would have been to specify the location of an external XED
script using the location attribute of the script element.

Declare the DocBook 5 namespace.

Note that the above XED script could also have used a default namespace:

namespace "http://docbook.org/ns/docbook";

set-variable("formalpara",

 <formalpara><title>TITLE HERE</title></formalpara>);

wrap-element($formalpara);

set-variable("script-selected", $formalpara);

set-variable("script-dot", ($formalpara//text())[1]);

as the default namespace is automatically used by element names, element templates (e.g. <form-
alpara><title>) and by XPath expressions, but not by attribute names and variable names (e.g.
script-dot).

Variable formalpara contains an empty formalpara element, specified using an element template.
Note that element templates are instantiated verbatim. Therefore do not indent an element template.

42

Macro commands

Also note that without the "TITLE HERE" placeholder for the text of the title, the formalpara/title
element would have been created without the customary empty text() child node, which is valid,
but not user-friendly.

Equivalent to wrap-element($formalpara, .). This replaces the context node (.), which is se-
lected para, by a formalpara containing selected para.

Setting variable script-selected allows to specify the first node of the node selection. Here we
want to explicitly select the newly created formalpara.

Setting variable script-dot allows to specify the textual node containing the caret (also called
"insertion cursor"). Here we want to move the caret inside the newly created formalpara.

Note that the above macro may be implemented much less efficiently by replacing the script child
element of macro by the invocation of a process command. See Section 2.1, “Convert explicitly or
implicitly selected para to a formalpara” [78].

43

Macro commands

Chapter 5. Process commands

1. Reference

<command

name = NMTOKEN (optionally preceded by

 a command namespace in XMLmind XML Editor - Configuration and Deployment)

>

Content: class | menu | macro | process

</command>

<process>

 showProgress = boolean : true

 debug = boolean : false

Content: [info]?

 [copyDocument|convertImage|copyProcessResources|transform|

 processFO|upload|post|read|

 mkdir|rmdir|delete|copy|zip|jar|shell|invoke|subProcess]+

</process>

<info>

Not documented.

</info>

<copyDocument

to = Path

 selection = boolean : false

 preserveInclusions = boolean : false

 filterDuplicateIDs = boolean : true

 saveCharsAsEntityRefs = boolean : false

 indent = boolean : false

 encoding = NMTOKEN : UTF-8

>

Content: [extract]* [resources]*

</copyDocument>

<extract

xpath = Absolute XPath (subset)

 dataType = anyURI|hexBinary|base64Binary|XML

 toDir = Path

 baseName = File basename without an extension

 extension = File name extension

>

 <processingInstruction

target = Name

data = string

 /> |

 <attribute

name = QName

44

../configure/configure.pdf#command_names

value = string

 /> |

any element

</extract>

<resources

 include = NMTOKENS

 exclude = NMTOKENS

match = Regexp pattern

 resolve = boolean : false

 copyTo = Path

 referenceAs = anyURI

/>

<convertImage

from = Glob pattern

 skip = List of file name extensions

to = Path

 format = List of file name extensions

 lenient = boolean : false

>

Content: [parameter | parameterGroup]*

</convertImage>

<parameter

name = Non empty token

 url = boolean

>

Content: Parameter value

</parameter>

<parameterGroup

 name = Non empty token

/>

<copyProcessResources

resources = anyURI | @anyURI | Glob pattern

to = Path

 name = NMTOKEN

>

Content: [info]?

</copyProcessResources>

<transform

stylesheet = anyURI

 version = Non empty token : "1.0"

 cacheStylesheet = boolean : false

file = Path

 pattern = boolean : false

to = Path

>

Content: [info]?

45

Process commands

 [parameter | parameterGroup]*

</transform>

<processFO

processor = Non empty token

file = Path

to = Path

>

Content: [parameter]* [processFO]?

</processFO>

<upload

base = anyURI

>

Content: [copyFile|copyFiles]+

</upload>

<copyFile

file = Path

to = anyURI

/>

<copyFiles

files = Glob pattern

toDir = anyURI

/>

<post

url = anyURI

 encoding = any ASCII compatible encoding : "ISO-8859-1"

 readResponse = boolean : false

>

Content: [field]+

</post>

<field

name = Form field name (US-ASCII only)

>

Content: value | file

</field>

<value>

Content: xs:string

</value>

<file

name = Path

 contentType = Content type

/>

<read

file = Path

46

Process commands

encoding = Any encoding supported by Java or default

/>

<mkdir

dir = Path

 quiet = boolean : false

/>

<rmdir

dir = Path

 quiet = boolean : false

/>

<delete

files = Glob pattern

 recurse = boolean : false

 quiet = boolean : false

/>

<copy

files = Glob pattern

to = Path

 recurse = boolean : false

 quiet = boolean : false

/>

<zip

archive = Path

>

Content: [add]+

</zip>

<add

files = Glob pattern

 baseDir = Path : .

 store = boolean : false

/>

<jar

archive = Path

>

Content: [add]+ [manifestFile | manifest]?

</jar>

<manifestFile>

Content: Path

</manifestFile>

<manifest>

Content: [attribute]+

</manifest>

47

Process commands

<attribute

name = NMTOKEN (matches [0-9a-zA-Z_-]+

 after substitution of variables)

>

Content: string

</attribute>

<shell

command = Shell command

 platform = (Unix | Windows | Mac | GenericUnix)

/>

<invoke

method = Qualified name of a Java static method

>

Content: [argument]+

</invoke>

<argument>

Content: string

</argument>

<subProcess

name = NMTOKEN (optionally preceded

 by a command namespace in XMLmind XML Editor - Configuration and Deployment)

 parameter = string

/>

Define an arbitrarily complex transformation of part or all of the document being edited.

A temporary directory is created for each execution of a process-command. This temporary directory is
intended to contain all the files generated by the process.

Value type Path is a file path such as images/log.gif or C:\temp\1.tmp. If this file path is relative,
it is relative to the temporary process directory. Character '/' can be used as a path component separ-
ator even on Windows. In fact, it is recommended to always use '/' as a path component separator to
keep XXE configuration files portable across platforms.

Value type Glob pattern is a file path, possibly with wildcards such as images/*.gif or ..\[a-zA-Z]*.
Everything said about value type Path also applies to value type Glob pattern. It is called a glob pattern
because it follows Unix conventions, not Windows conventions. Example 1: *.* matches the_docu-
ment.xml, but does not match the_document. Example 2: [a-z]*.html matches report.html, but
does not match Report.html (even on Windows where filenames are case-insensitive).

A process-command returns the result of its last executed child element which itself returns a result (if
any). The following child elements may return a result: post [65], read [67], invoke [73], subPro-
cess [75].

48

Process commands

../configure/configure.pdf#command_names

1.1. Attributes

showProgress

Unless this attribute is set with value false, a dialog box is displayed during the execution of a
process command to show the user what is happening.

Though process commands have been mainly designed to convert XML documents to other formats
such as PDF, RTF of HTML, it is also possible to use them to write small, quick, yet sophisticated
macro-commands. In such case, the process command/macro-command developer will probably
want to:

• Set attribute showProgress of element process to value false.

• Set attribute cacheStylesheet of child element transform to value true.

• Use child element read associated to command paste [125] or command XXE.open [171] to replace
part or all of the document being edited by the result of the XSLT transformation.

debug

If specified as true, this attribute prevents the command from deleting its work directory
(/tmp/xxeNNNN/) at the end of the processing. This is useful if, for example, you need to look at the
XSL-FO file generated by the transform [60] element of the process command.

1.2. Element copyDocument

<copyDocument

to = Path

 selection = boolean : false

 preserveInclusions = boolean : false

 filterDuplicateIDs = boolean : true

 saveCharsAsEntityRefs = boolean : false

 indent = boolean : false

 encoding = (ISO-8859-1|ISO-8859-13|ISO-8859-15|ISO-8859-2|

 ISO-8859-3|ISO-8859-4|ISO-8859-5|ISO-8859-7|

 ISO-8859-9|KOI8-R|MacRoman|US-ASCII|UTF-16|UTF-8|

 Windows-1250|Windows-1251|Windows-1252|Windows-1253|

 Windows-1257) : UTF-8

>

Content: [extract]* [resources]*

</copyDocument>

<extract

xpath = Absolute XPath (subset)

 dataType = anyURI|hexBinary|base64Binary|XML

 toDir = Path

 baseName = File basename without an extension

 extension = file name extension

>

 <processingInstruction

target = Name

data = string

49

Process commands

 /> |

 <attribute

name = QName

value = string

 /> | any element

</extract>

<resources

match = Regexp pattern

 copyTo = Path

 referenceAs = anyURI

/>

Copy document being edited to the location specified by required attribute to.

1.2.1. Attributes

DescriptionAttribute

Specifies the file where the document (or the node selection) is to be copied.to

If this attribute is specified with value true and if an element is explicitly
selected, this element is saved to the specified location.

selection

If multiple nodes are explicitly selected, their parent element is saved and
a special processing-instruction <?select-child-nodes>, specifying which
nodes are selected, is added to the root element of the saved document.

Example, the user has selected paragraphs with content 2, 3 and 4:

<div>

 <?select-child-nodes 3-5?>

 <p>1</p>

 <p>2</p>

 <p>3</p>

 <p>4</p>

</div>

In the above example, 3-5 is a node range intended to be tested using posi-
tion(), the XPath built-in function. See Section 2.1, “Convert explicitly
or implicitly selected para to a formalpara” [78] below to learn how to handle
such multiple node selection in the XSLT style sheet.

Otherwise, it is the whole document which is saved to the specified location.

If this attribute is specified with value true , the generated XML file containspreserveInclusions

• references to external entities,
• transclusion directives (e.g. XInclude).

Otherwise (default value),

• references are replaced by the contents of the external entities,

50

Process commands

DescriptionAttribute

• transclusion directives (e.g. XInclude) are replaced by transcluded con-
tents.

Ignored unless preserveInclusions is set to false, that is, ignored unless
the generated XML file contains transclusions.

filterDuplicateIDs

If this attribute is specified with value true (default value), an attempt is
made to remove duplicate ID errors resulting from the presence of tran-
scluded contents. This is done by adding a unique automatically generated
suffix to these “false” duplicate IDs.

If this attribute is specified with value true, the generated XML file contains
references to character entities such as é (if needed to and if such
entities are defined in the DTD of the document being edited).

saveCharsAsEnti-

tyRefs

Otherwise, the generated XML file contains character references such as
é (if needed to).

If this attribute is specified with value true, the generated XML file is in-
dented.

indent

Otherwise, the generated XML file is not indented.

Specifies the encoding of the generated XML file.encoding

1.2.2. Element extract

<extract

xpath = Absolute XPath (subset)

 dataType = anyURI|hexBinary|base64Binary|XML

 toDir = Path

 baseName = File basename without an extension

 extension = File name extension

>

 <processingInstruction

target = Name

data = string

 /> |

 <attribute

name = QName

value = string

 /> |

any element

</extract>

The extract element is designed to ease the writing of XSLT style sheets that need to transform XML
documents where binary images (TIFF, PNG, etc) or XML images (typically SVG) are embedded.

In order to do this, the extract element copies the image data found in the element or the attribute
specified by attribute xpath to a file created in the directory specified by attribute toDir.

The name of the image is automatically generated by extract. However, attributes baseName and ex-
tension may be used to parametrize to a certain extent the generation of the image file name.

51

Process commands

Now the question is: how does the XSLT style sheet know about the ̀ `extracted'' image files? The extract
element offers three options:

• Replace the element containing image data by the one specified as a child element of extract.

If xpath selects an attribute instead of an element, the element containing the selected attribute is re-
placed.

DocBook example: replace embedded svg:svg (allowed in "-//OASIS//DTD DocBook SVG Module
V1.0//EN") by much simpler imagedata:

<cfg:extract xmlns="" xpath="//imageobject/svg:svg" toDir="raw">

 <imagedata fileref="resources/{$url.rootName}.png" />

</cfg:extract>

• OR, replace the element containing image data by the attribute which is specified using the attribute
child element of extract. This attribute is added to the parent element of the element containing
image data.

If xpath selects an attribute instead of an element, the element containing the selected attribute is re-
placed.

DocBook 5 example: replace embedded db5:imagedata/svg:svg by db5:imagedata/@fileref:

<cfg:extract xmlns=""

 xmlns:db5="http://docbook.org/ns/docbook"

 xmlns:svg="http://www.w3.org/2000/svg"

 xpath="//db5:imagedata/svg:svg" toDir="raw" >

 <cfg:attribute name="fileref"

 value="resources/{$url.rootName}.png" />

</cfg:extract>

• OR, more general approach, insert a processing instruction (which is specified using the processingIn-
struction child element of extract) at the beginning of the element from which data has been ex-
tracted.

If xpath selects an attribute instead of an element, the processing instruction is inserted in the element
containing the selected attribute.

Example: insert <?extracted extracted_file_name?> in imgd:image_ab and imgd:image_eb:

<extract xpath="//imgd:image_ab/@data | //imgd:image_eb" toDir="raw">

 <processingInstruction target="extracted"

 data="resources/{$url.rootName}.png" />

</extract>

The replacement element (attribute values or text nodes in the element or in any of its descendant) and
the inserted processing instruction (target and data) can reference the following variables which are
substituted by their values during the extraction step:

52

Process commands

ValueVariable

Pathname of the extracted image file. Example: "/tmp/xxe1234/book_im-
age_3.svg".

{$file.path}

Pathname of the directory containing the extracted image file. Example:
"/tmp/xxe1234/".

{$file.parent}

Name of the extracted image file. Example: "book_image_3.svg".{$file.name}

Name of the extracted image file, but without an extension. Example:
"book_image_3".

{$file.rootName}

Extension of the extracted image file name. Example: "svg".{$file.extension}

Native path component separator of the platform. Example: '\' on Windows.{$file.separator}

U R L o f t h e ex t r a c t e d i m a g e fi l e . E x a m p l e :
"file:///tmp/xxe1234/book_image_3.svg".

{$url}

Unlike {$file.XXX} variables, the values of {$url.XXX}
variables are escaped if needed to.

URL of the directory containing the extracted image file. Example:
"file:///tmp/xxe1234". Note that this URL does not end with a '/'.

{$url.parent}

Name of the extracted image file. Example: "book_image_3.svg".{$url.name}

Name of the extracted image file, but without an extension. Example:
"book_image_3".

{$url.rootName}

Extension of the extracted image file name. Example: "svg".{$url.extension}

In fact, any XPath expression (full XPath 1.0, not just the subset used in attribute xpath), not only
variable references, can be put between curly braces (example: {./@id}). Such XPath expressions are
evaluated as strings in the context of the element selected by attribute xpath. If attribute xpath selects
an attribute, its parent element is used as an evaluation context for the XPath expression.

Attributes:

xpath

Selects elements and attributes containing the image data to be extracted.

This XPath expression must conform to the XPath subset needed to implement W3C XML Schemas
(but not only relative paths, also absolute paths).

dataType

Specifies how the image data is ``stored'' in the elements or the attributes selected by the above
XPath expression: anyURI, hexBinary, base64Binary or XML. This cannot be guessed for documents
conforming to a DTD and for documents not constrained by a grammar.

Default: find the data type using the grammar of the document being processed.

toDir

Specifies the directory where extracted image files are to be created. Relative directories are relative
to the temporary directory created during the execution of the process (that is, %W).

53

Process commands

http://www.w3.org/TR/xmlschema-1/

Default: use the temporary directory created during the execution of the process (that is, %W).

baseName

Specifies the start of the extracted image file names. An automatically generated part is always added
after this user prefix.

Default: the base name of an extracted image file is automatically generated in its entirety.

extension

Specifies which extension to use for extracted image file names. Specifying "svgz" for extracted
SVG images allows to create compressed SVG files.

Default: the extension is guessed by XXE for a number of common image formats.

1.2.3. Element resources

<resources

 include = NMTOKENS

 exclude = NMTOKENS

match = Regexp pattern

 resolve = boolean : false

 copyTo = Path

 referenceAs = anyURI

/>

The resources child element specifies what to do with the resources which are logically part of the
document.

The resources which are logically part of the document are specified using another configuration element:
documentResources (see Section 10, “documentResources” in XMLmind XML Editor - Configuration
and Deployment). DocBook example:

<cfg:documentResources xmlns="">

 <cfg:resource kind="image" path="//imagedata/@fileref"/>

 <cfg:resource kind="image" path="//graphic/@fileref"/>

 <cfg:resource kind="image" path="//inlinegraphic/@fileref"/>

 <cfg:resource kind="text" path="//textdata/@fileref"/>

 <cfg:resource kind="audio" path="//audiodata/@fileref"/>

 <cfg:resource kind="video" path="//videodata/@fileref"/>

</cfg:documentResources>

Note that elements replaced during an extraction step [51] specified by the extract element are never
scanned for resources.

The default resources child elements are:

<resources match="^[a-zA-Z][a-zA-Z0-9.+-]*:/.+" />

<resources match=".+" copyTo="." />

Attributes of the resources child element specifying how to match a resource:

54

Process commands

../configure/configure.pdf#documentResources

match

For each resource of the document specified by the documentResources element, its URI is tested
to see if it matches the first resources child element. If it does not match the first resources child
element, the second resources child element is tried and so on until a matching resources child
element is found.

If the matching resources element has no resolve, copyTo or referenceAs attribute, the matched
resource is ignored. For example, rule <resources match="^[a-zA-Z][a-zA-Z0-9.+-]*:/.+"/>
is designed to ignore resources of any kind having an absolute URL.

include

This attribute contains one or more kinds of resources separated by whitespace. Example related to
the above DocBook example: include="image".

Unless the resource being processed has been given a kind and unless this kind is referenced in at-
tribute include of element resources, the action corresponding to element resources is skipped.

exclude

This attribute contains one or more kinds of resources separated by whitespace. Example related to
the above DocBook example: exclude="text image".

If the resource being processed has been given a kind and if this kind is referenced in attribute ex-
clude of element resources, the action corresponding to element resources is skipped.

Attribute exclude has priority over attribute include.

Attributes of the resources child element specifying an action on the matched resource:

resolve

If resolve="true", attributes copyTo and referenceAs are ignored. Instead, in the copy of the
document, the relative URI of the matched resource is replaced by its equivalent absolute URI.

Example:

<resources include="text" match=".+"

 resolve="true"/>

Let's suppose document file:///docs/doc.xml references text resource examples/sample1.txt.
The copy of the document will reference absolute URI file:///docs/examples/sample1.txt.

copyTo

Specifies where to copy the matched resource. This can be a file name or a directory name.

The value of this attribute can contain $1, $2, ..., $9 variables, which are substituted with the substrings
matching the parenthesized groups of the match regular expression.

Example:

<resources match="(?:.+/)?(.+)\.jpg"

 copyTo="resources/$1.jpeg"/>

Let's suppose the document references resource images/logo.jpg. File logo.jpg will be copied
to resources/logo.jpeg and the copy of the document will reference resources/logo.jpeg.

55

Process commands

referenceAs

Specifies the reference to the resource in the document created by the copyDocument configuration
element.

Like for copyTo, the value of this attribute may contain $1, $2, ..., $9 variables.

Generally, this attribute is not needed because the reference implied by the value of the copyTo at-
tribute is sufficient. But this attribute can be useful if images are to be converted from their original
format to a format supported by the target XSL-FO processor.

DocBook example:

<process>

 <mkdir dir="resources"/>

 <mkdir dir="raw"/>

 <copyDocument to="__doc.xml">

 <resources match="^[a-zA-Z][a-zA-Z0-9.+-]*:/.+"/>

 <resources include="text" match=".+"

 resolve="true"/>

 <resources include="image" match=".+\.(png|jpg|jpeg|gif)"

 copyTo="resources"/>

 <resources include="image" match="(?:.+/)?(.+)\.(\w+)"

 copyTo="raw" referenceAs="resources/$1.png"/>

 <resources exclude="text image" match=".+"

 copyTo="resources"/>

 </copyDocument>

 <convertImage from="raw" to="resources" format="png"/>

 ...

</process>

1.3. Element convertImage

<convertImage

from = Glob pattern

 skip = List of file name extensions

to = Path

 format = List of file name extensions

 lenient = boolean : false

>

Content: [parameter | parameterGroup]*

</convertImage>

<parameter

name = Non empty token

 url = boolean

>

Content: Parameter value

56

Process commands

</parameter>

<parameterGroup

 name = Non empty token

/>

Converts between image formats using any of the image toolkit plug-ins1 loaded by XXE.

Attributes:

from

Specifies which image files are to be converted. If the value of this attribute is a directory, all the
files contained in the directory are to be converted.

skip

The value of this attribute is a list of file name extensions. All the images specified using attribute
from having any of these extensions must not be converted.

Example:

<convertImage from="resources" skip="gif jpeg jpg png"

 to="resources" format="png" />

The following case is, of course, not considered to be an error: after evaluating attributes from and
skip, no image at all needs to be converted. (In fact, this is a very common case.)

to

Specifies the output image file. May be a file name or a directory name.

If a directory name is used, the format attribute must be specified too (because without a file base
name, there is no other way to know the target image format).

If after evaluating attributes from and skip, several images needs to be converted, the value of the
to attribute must be a directory name.

Examples:

<convertImage from="resources/logo.tiff" to="resources/xmlmind.jpeg" />

<convertImage from="resources/*.svg" to="resources" format="png" />

format

The value of this attribute is a list of file name extensions. It specifies all the possible output formats
in the order of preference. Ignored unless attribute to specifies a directory name.

Example: the document needs to be converted to PostScript. Converting images to EPS (Encapsulated
PostScript) is tried before trying to convert images to PNG.

1Image toolkit plug-ins are generally written in the Java™ programming language. However, the imageToolkit configuration
element (see Section 15, “imageToolkit” in XMLmind XML Editor - Configuration and Deployment) may be used to turn any
command line tool generating GIF, JPEG or PNG images (example: ImageMagick's convert) to a fully functional image toolkit
plug-in for XXE.

57

Process commands

../configure/configure.pdf#imageToolkit
http://www.imagemagick.org/

<convertImage from="raw" to="resources" format="eps png" />

lenient

Unless this attribute is specified with value true, a error (a crash of the image toolkit or simply the
fact that the image converter needed is not available) during the image conversion step is fatal to
the whole process command.

Parameters and parameterGroups may be used to fine tune the conversion. Example:

<convertImage from="raw/*.svg" to="resources" format="jpeg">

 <parameter name="quality">0.95</parameter>

</convertImage>

Which parameters are supported depend on the image toolkit used for the conversion. The parameters
supported by the built-in Java image toolkit are documented below. The documentation of the parameters
supported by other image toolkits is displayed in the documentation pane of the dialog box of Options
→ Install Add-ons.

Which image toolkit is used for the conversion is often obvious. In the above example, no image toolkit
other than Batik can convert SVG graphics to PNG.

When several image toolkits can do the same job, suffice to remember that they are tried in the order
given in the dialog box displayed by menu entry Help → Plug-ins.

1.3.1. Parameters supported by the built-in Java image toolkit

DescriptionValueApplies to output
format

Parameter

Controls the tradeoff between file size
and image quality .

Number between
0 and 1.

JPEGquality

If true, the toolkit is to write the image
in a progressive mode such that the

true | falsePNG, JPEGprogressive

stream will contain a series of scans of
increasing quality.

1.4. Element copyProcessResources

<copyProcessResources

resources = anyURI | @anyURI | Glob pattern

to = Path

 name = NMTOKEN

>

Content: [info]?

</copyProcessResources>

<info>

Not documented.

</info>

58

Process commands

Copy resources needed by the process to the specified location. Typically, these resources are images
needed by the XSLT style sheet.

Attributes:

resources

Specifies which resources to copy.

If the value of the resources attribute is a relative URL, it is relative to the directory containing
the configuration file.

Wildcards, for example xsl/images/*.png, are supported only if the value of the resources attribute
is a file: URL (after resolving this URL against the URL of the configuration file)

It is recommended to specify multiple resources using the notation @list-in-a-text-file, for example
@xsl/images/list.txt. This mechanism works even the configuration file is located on a remote
server.

The URI specified in this attribute may be also resolved using XML catalogs.

Format of list-in-a-text-file

Such text files should be encoded in UTF-8.

The paths contained in such files should be separated by newline characters ('\n').
Open lines and lines starting with '#' are ignored.

Relatives paths are relative to the location of the text file.

Example:

This is a comment.

resources/basic.css

resources/attention.png

resources/caution.png

resources/tip.png

to

Specifies the destination file. If the value of the resources attribute specifies multiple resources,
this destination must be an existing directory.

name

Giving a name to a process resource allows to easily replace it by a custom one. When a name attribute
has been specified, the value of the resources attribute is preferably taken from the system property
called "process_command_name.resource.name", if such system property exists and is not empty.

DocBook 5 example: process command db5.toHTMLHelp is specified as follows:

 <command name="db5.toHTMLHelp">

 <process>

 <subProcess name="db5.convertStep1" />

59

Process commands

http://www.oasis-open.org/committees/entity/

 <copyProcessResources resources="xsl/css/htmlhelp.css"

 to="htmlhelp.css" name="css" />

 <transform stylesheet="xsl/htmlhelp/htmlhelp.xsl"

 ...

 </process>

 </command>

Therefore defining system property db5.toHTMLHelp.resource.css allows to replace the stock
htmlhelp.css by a custom CSS style sheet. Example:

<property name="db5.toHTMLHelp.resource.css" url="true">fancy.css</property>

(Remember that a system property can defined in a configuration file by using the property config-
uration element. See Section 22, “property” in XMLmind XML Editor - Configuration and Deploy-
ment.)

1.5. Element transform

<transform

stylesheet = anyURI

 version = Non empty token : "1.0"

 cacheStylesheet = boolean : false

file = Path

to = Path

 pattern = boolean : false

>

Content: [info]?

 [parameter | parameterGroup]*

</transform>

<info>

Not documented.

</info>

<parameter

name = Non empty token

 url = boolean

>

Content: Parameter value

</parameter>

<parameterGroup

 name = Non empty token

/>

Converts a XML file to another format using built-in XSLT engine.

Attributes:

60

Process commands

../configure/configure.pdf#property

stylesheet

Specifies which XSLT style sheet to use. If this URL is relative, it is relative to the directory con-
taining the XXE configuration file.

The URI specified in this attribute may be also resolved using XML catalogs.

version

Specifies the version of the XSLT style sheet and hence, which XSLT engine to use. Default value
is "1.0". The only other supported value is "2.0".

If version="1.0", the bundled Saxon 6.5.5 XSLT 1 engine is used.

If version="2.0", the bundled Saxon 9.2+ XSLT 2 engine is used.

A version number may be followed by one or more fully qualified method names separated by
semicolons (';'). Example: "2.0;com.xmlmind.ditac.xslt.ExtensionFunctions.registerAll".

Such methods are used to configure a javax.xml.transform.TransformerFactory prior to using
it. They are typically used to add extension functions to Saxon 9.2+.

Such methods must be static and must have the following signature: void method_name(Transformer-
Factory factory) throws Exception.

cacheStylesheet

If this attribute is specified as true, a precompiled form of the XSLT style sheet is built and then
cached for subsequent uses.

It is not recommended to cache an XSLT style sheet unless this style sheet is small and used in
highly interactive process commands (like in example 1 below).

file

Input file.

When pattern="false", the value of the file attribute is expected to a simple file path. However,
it's also possible to specify a glob pattern, but in such case, pattern mode [61] is not enabled and
this glob pattern must match exactly one file.

to

Output file or directory. When to specifies a directory, the basename of the output file is taken from
the input file.

pattern

If this attribute is specified as true, transform operates in “pattern mode” and a glob pattern is al-
lowed in the file attribute. Pattern mode is best explained by the two following examples:

Example 1: file="*.xml", to="temp". Glob pattern *.xml matches foo.xml and bar.xml. Attribute
value temp specifies an existing directory. The XSLT transform will be invoked twice, first time
with foo.xml as its input and the second with bar.xml as its input. The first time, the transform
will generate temp/foo.xml and the second time it will generate temp/bar.xml.

Example 2: file="*.xml", to="any.htm". Glob pattern *.xml matches foo.xml and bar.xml.
The XSLT transform will be invoked twice, first time with foo.xml as its input and the second with
bar.xml as its input. The first time, the transform will generate foo.htm and the second time it will
generate bar.htm.

61

Process commands

http://www.oasis-open.org/committees/entity/
http://sourceforge.net/projects/saxon/
http://www.saxonica.com/

Parameter and/or named parameterGroup child elements are used to parametrize the XSLT style sheet.
Example: <parameter name="paper.type">A4</parameter>. Such parameters are described in the
documentation of the XSLT style sheets (e.g. DocBook XSL Stylesheet Documentation).

If a transform element references a parameterGroup, this means that a parameterGroup configuration
element (see Section 23, “parameterGroup” in XMLmind XML Editor - Configuration and Deployment)
with the same name is defined elsewhere in this configuration file or in another configuration file. Note
that it is not an error to reference a parameterGroup for which the configuration element is not found.
Such reference to a possibly non-existent parameterGroup is useful as a placeholder.

1.5.1. Using a custom XSLT style sheet

A user can force the use of a custom style sheet of his own instead of the one normally specified in at-
tribute stylesheet.

In order to do this, the user needs to specify a property called process_command_name.transform in any
XXE configuration file. The value of this property must be the URL of the custom XSLT style sheet.
(This property is typically specified in the user's customize.xxe file. See property configuration element
in Section 22, “property” in XMLmind XML Editor - Configuration and Deployment.)

If a process command has several transform child elements, property process_command_name.transform
specifies a style sheet for the first transform, process_command_name.transform.2 specifies a style sheet
for the second transform, process_command_name.transform.3 specifies a style sheet for the third
transform and so on.

Example: the process command to be customized is called docb.toPS (see XXE_install_dir/addon/con-
fig/docbook/xslMenu.incl). User has added the following property to his customize.xxe file.

<property name="docb.toPS.transform" url="true">fo_docbook.xsl</property>

Note that the URL is relative to the configuration file containing the definition of property
docb.toPS.transform (here, it is relative to customize.xxe).

The custom XSLT style sheet fo_docbook.xsl contains:

<?xml version='1.0'?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

 xmlns:fo="http://www.w3.org/1999/XSL/Format"

 version='1.0'>

<xsl:import href="docbook-config:xsl/fo/docbook.xsl"/>

<xsl:template match="bookinfo/author|info/author" mode="titlepage.mode">

 <fo:block>

 <xsl:call-template name="anchor"/>

 <xsl:call-template name="person.name"/>

 <xsl:if test="affiliation/orgname">

 <fo:block>

 <xsl:apply-templates select="affiliation/orgname"

 mode="titlepage.mode"/>

 </fo:block>

 </xsl:if>

62

Process commands

http://docbook.sourceforge.net/release/xsl/current/doc/
../configure/configure.pdf#parameterGroup
../configure/configure.pdf#property

 <xsl:if test="email|affiliation/address/email">

 <fo:block>

 <xsl:apply-templates select="(email|affiliation/address/email)[1]"/>

 </fo:block>

 </xsl:if>

 </fo:block>

</xsl:template>

</xsl:stylesheet>

Note how the stock docbook.xsl is imported by this customized version.

In our opinion, it is almost impossible to cope with the complexity of customizing Norman
Walsh's DocBook XSLT style sheets without reading this excellent book: DocBook XSL:
The Complete Guide by Bob Stayton.

1.6. Element processFO

<processFO

processor = Non empty token

file = Path

to = Path

>

Content: [parameter]* [processFO]?

</processFO>

<parameter

name = Non empty token

 url = boolean

>

Content: Parameter value

</parameter>

<parameterGroup

 name = Non empty token

/>

Converts a XSL-FO file to another format, typically a page description language such as PDF.

Attributes:

processor

Specifies which FO processor to use.

Unlike the XSLT engine used by a transform element, the FO processor used to perform this con-
version is not built-in into XXE. A FO processor plug-in having a name equals the value of the
processor attribute (case-insensitive) must have been registered with XXE.

file

Input file.

63

Process commands

http://www.sagehill.net/docbookxsl/
http://www.sagehill.net/docbookxsl/

to

Output file.

Parameter child elements are passed to the XSL-FO processor in order to parametrize its behavior.
These parameters are described in the documentation of the XSL-FO processors.

If the url attribute of a parameter child element is specified and its value is true, the parameter value
must be a relative or absolute URL (properly escaped like all URLs). In such case, the value of the
parameter is the fully resolved URL.

XFC example:

<parameter name="outputEncoding">Cp1252</parameter>

XEP example:

<parameter name="PS.LANGUAGE_LEVEL">2</parameter>

In addition to actual parameters, some XSL-FO processors may also support a number of pseudo-para-
meters. The documentation of these pseudo-parameters is displayed in the documentation pane of the
dialog box of Options → Install Add-ons.

The processFO optional child element:

This optional child element specifies which FO processor to use when the FO processor specified by
the parent processFO element is not available.

Example: try to use FOP when XEP is not available:

<processFO processor="XEP" file="__doc.fo" to="__doc.pdf">

 <parameter name="OUTPUT_FORMAT">pdf</parameter>

 <processFO processor="FOP" file="__doc.fo" to="__doc.pdf">

 <parameter name="renderer">pdf</parameter>

 <parameter name="configuration" url="true">fop.xconf</parameter>

 </processFO>

</processFO>

1.7. Element upload

<upload

base = anyURI

>

Content: [copyFile|copyFiles]+

</upload>

<copyFile

file = Path

to = anyURI

/>

<copyFiles

64

Process commands

files = Glob pattern

toDir = anyURI

/>

Copies files generated during the process to remote FTP or WebDAV servers or to the local file system.
Can create directories on the fly if needed to.

Child elements:

copyFile

Specifies a single file to be copied to the upload destination.

The value of the file attribute is generally a simple file path. However it's also possible to specify
a glob pattern, but in such case, this glob pattern must match exactly one file.

The URL specified by the to attribute is resolved against the URL specified by the base attribute.

copyFiles

Specifies possibly multiple files to be copied to the upload destination. If any of the matched files
is a directory, it will be recursively copied. Has no effect is specified glob pattern does not match
any file or directory.

The URL specified by the toDir attribute is resolved against the URL specified by the base attribute.

1.8. Element post

<post

url = anyURI

 encoding = any ASCII compatible encoding : "ISO-8859-1"

 readResponse = boolean : false

>

Content: [field]+

</post>

<field

name = Form field name (US-ASCII only)

>

Content: value | file

</field>

<value>

Content: xs:string

</value>

<file

name = Path

 contentType = Content type

/>

Emulates an HTML form possibly containing input type="file" elements. More precisely, the post
element implements HTML5 — Form submission — Multipart form data using emulated in-
put type="text" and input type="file" form fields.

65

Process commands

http://www.w3.org/TR/html/forms.html#form-submission-0

The body of the POST request is encoded as "multipart/form-data" if the post element contains at
least one file descendant element. Otherwise this body is encoded as "application/x-www-form-
urlencoded".

Optional attribute encoding specifies the character encoding used by the form submission algorithms.

Always specify the name of an ASCII compatible encoding (ISO-8859-1, UTF-8, Windows-
1252, etc) in the encoding attribute.

An emulated form field has a name specified by required attribute name. There are two type of fields:

value

Emulates input type="text" or input type="hidden" elements found in an HTML form. The
content of this element, a possibly empty string, specifies the value of the field.

file

Emulates input type="file" elements found in an HTML form. The name attribute of this element
specifies the filename of the file to be uploaded.

Unless specified, the content type of the file is guessed using the extension of the filename. If the
filename ends with:

.zip

the content type is supposed to be application/zip;

.jar

the content type is supposed to be application/x-java-archive;

.xml

the content type is supposed to be text/xml.

Otherwise, the content type is supposed to be application/octet-stream.

If attribute readResponse is specified with value true, this element returns the response of the server.
Otherwise, this element returns no result at all.

Moreover, for this element to return a result, the server must respond to the post request with a success
code different from "No Content" (204) and must send "text/*" data (e.g. "text/plain", "text/html",
etc). If the content type of the sent data has no charset, the data is read as a string using charset "ISO-
8859-1".

Examples:

<post url="http://localhost:8080/measure/archive">

 <field name="op">

 <value>add</value>

 </field>

 <field name="user">

 <value>%U</value>

 </field>

 <field name="data">

66

Process commands

 <file name="/tmp/1052_3_CO_3.1R" />

 </field>

</post>

<post url="http://localhost:8080/measure/archive"

 readResponse="true">

 <field name="op">

 <value>add</value>

 </field>

 <field name="user">

 <value>%U</value>

 </field>

 <field name="interactive">

 <value>false</value>

 </field>

 <field name="data">

 <file name="1052_3_CO_3.1R"

 contentType="text/xml; charset=ISO-8859-1" />

 </field>

</post>

<post url="http://www.acme.com/login"

 encoding="UTF-8" readResponse="true">

 <field name="username">

 <value>admin</value>

 </field>

 <field name="password">

 <value>changeit</value>

 </field>

</post>

1.9. Element read

<read

file = Path

encoding = Any encoding supported by Java or default

/>

Loads the content of specified text file and returns this content.

If encoding is specified as default, the encoding of the text file is the native encoding of the platform,
for example Windows-1252 on an US Windows machine.

1.10. Element mkdir

<mkdir

dir = Path

 quiet = boolean : false

/>

67

Process commands

Creates specified directory. If parent directories needs to be created in order to create specified directory,
these parent directories are created too.

Will report an error if specified directory cannot be created. Attribute quiet can be used to suppress the
error message when specified directory already exists.

1.11. Element rmdir

<rmdir

dir = Path

 quiet = boolean : false

/>

Removes specified directory. For this operation to succeed, the specified directory must be empty.

Will report an error if specified directory cannot be removed. Attribute quiet can be used to suppress
the error message when specified directory does not exist.

1.12. Element delete

<delete

files = Glob pattern

 recurse = boolean : false

 quiet = boolean : false

/>

Deletes specified files.

Has no effect is specified wildcard does not match any file.

Will report an error if one of the specified files cannot be deleted. Attribute quiet can be used to suppress
the error message when one of the specified files does not exist.

If attribute recurse is specified with value true, it will also recursively delete specified directories.
Otherwise, if one of the specified files is a directory, it will report an error message.

1.13. Element copy

<copy

files = Glob pattern

to = Path

 recurse = boolean : false

 quiet = boolean : false

/>

Copies files and directories specified by attribute files to the file or directory specified by attribute to.

Has no effect is specified wildcard does not match any file.

If specified wildcard matches several files or directories, the destination must be an existing directory.

68

Process commands

Directories will not be copied unless attribute recurse is specified with value true.

Attribute quiet can be used to suppress the error message when one of the specified files does not exist
or when one of the specified files is a directory (and attribute recurse is different from true).

1.14. Element zip

<zip

archive = Path

>

Content: [add]+

</zip>

<add

files = Glob pattern

 baseDir = Path : .

 store = boolean : false

/>

Creates a Zip archive located at archive containing the files specified by the add child elements.

When specified with value true, the store attribute of the add child element allows to add entries to a
Zip archive without compressing them.

See also jar [70].

Example: Let's suppose current working directory contains:

/tmp$ ls -R

doc.xml

doc.xml~

doc.xml.SAVE

./attachments:

data1.bin

data1.zip

data2.bin

data2.zip

./resources:

logo.png

chart1.jpeg

<zip archive="all.zip">

 <add files="doc.xml" />

 <add files="resources/*" store="true" />

 <add files="misc/*" />

 <add files="*.bin" baseDir="attachments" />

</zip>

The above zip element creates in current working directory, an archive called all.zip, containing:

69

Process commands

/tmp$ unzip -v all.zip

doc.xml

resources/

resources/logo.png

resources/chart1.jpeg

data1.bin

data2.bin

Note that non-existent directory misc/ will not cause the zip element to stop its processing or to report
a warning.

1.15. Element jar

<jar

archive = Path

>

Content: [add]+ [manifestFile | manifest]?

</jar>

<add

files = Glob pattern

 baseDir = Path : .

 store = boolean : false

/>

<manifestFile>

Content: Path

</manifestFile>

<manifest>

Content: [attribute]+

</manifest>

<attribute

name = xs:NMTOKEN (must match [0-9a-zA-Z_-]+ after

 substitution of process variables)

>

Content: xs:string

</attribute>

Similar to zip [69], except that the archive always contains a manifest (even if this manifest is empty).
The manifest, if any, is specified using a manifestFile child element or a manifest child element.

Examples:

<jar archive="doc.jar">

 <add files="doc.xml" />

 <add files="images/*.gif" />

 <manifestFile>/tmp/manifest</manifestFile>

</jar>

70

Process commands

<jar archive="doc2.jar">

 <add files="doc.xml" />

 <add files="images/*.gif" store="true" />

 <manifest>

 <attribute name="Master-Document">doc.xml</attribute>

 <attribute name="Publication-Date">%0</attribute>

 <attribute name="Self-Contained"></attribute>

 </manifest>

</jar>

1.16. Element shell

<shell

command = Shell command

 platform = (Unix | Windows | Mac | GenericUnix)

/>

Executes specified command using native shell: cmd.exe on Windows and /bin/sh on Unix (Mac OS
X is considered to be a Unix platform).

The current working directory of the native shell is the temporary directory created for the execution of
the process-command (%W, see below [75]).

Specified command may reference helper applications [72] declared using the Preferences dialog box,
Helper Applications section.

If the platform attribute is not specified, the shell command is executed whatever is the platform running
XXE.

If the platform attribute is specified, the shell command is executed only if the platform running XXE
matches the value of this attribute:

Windows

Any version of Windows.

Mac

Mac OS X.

GenericUnix

A Unix which is not Mac OS X (Linux, Solaris, etc).

Unix

GenericUnix or Mac.

71

Process commands

Using helper applications in commands interpreted by the native shell

This applies to the shell [71] element of a process [44] command as well as to the run [137] and start [157]
commands.

Instead of containing substring "notepad foo.txt", a command line, interpreted by cmd.exe on Windows
and /bin/sh on Unix, may contain something like "helper(text/plain) foo.txt" or "helper(txt)
foo.txt" or even "helper() foo.txt".

In the above example, substring "helper(spec) path" refers to a helper application declared using the
Preferences dialog box, Helper Applications section.

This preferences sheet allows to associate helper applications to file types. In the above example, we assume
that plain text files, that is files having MIME type "text/plain" or having a "txt" filename extension,
have been associated to helper application "notepad "%F"".

Examples of command lines making use of helper applications:

<command name="run"

 parameter="helper(text/plain) '%D'"/>

<command name="start"

 parameter="helper(defaultViewer) '%_'"/>

<shell command="helper(.hhp) htmlhelp.hhp || exit 0"/>

<shell command="helper(application/x-java-help-index) ."/>

In order to use helper applications, a command line must contain substrings having this syntax: "help-
er(spec) path".

spec

Specifies which helper application to use. It may be:

• A MIME type. Example: "text/plain".

• A filename extension, with or without a leading ".". Example: ".hhp".

• Fixed string "defaultViewer", which is the helper application specified in Preferences dialog box,
Helper Applications section, Default viewer field. This default viewer is generally a Web browser.

• Empty. In which case, the filename extension of path is used.

path

Must always follow the helper() construct. This absolute or relative filename or URL may be quoted
using single or double quotes if it happens to contain whitespace characters.

When a command line contains a "helper(spec) path" substring, this substring is substituted with the
corresponding helper application. How this is done is best explained using an example.

Let's suppose the command line is "helper(defaultViewer) 'foo.html'".

Let's suppose the default viewer is specified as: "(mozilla -remote "openURL(%U)" 1> /dev/null
2>&1) || (mozilla "%U" &)".

72

Process commands

Single quotes are stripped from path 'foo.html' and each occurrence of %U (or %F) in the helper application
is replaced by this path (without any other added value).

This gives: "(mozilla -remote "openURL(foo.html)" 1> /dev/null 2>&1) || (mozilla "foo.html"
&)" (which, in this case, cannot work because foo.html is not an absolute URL).

1.17. Element invoke

<invoke

method = Qualified name of a Java static method

>

Content: [argument]+

</invoke>

<argument>

Content: string

</argument>

Invokes specified Java™ static method, passing it specified arguments.

• The method generally belongs to a class which is contained in a jar dynamically discovered by XXE
at startup time.

• The method must have one of the following signatures:
• method(java.lang.String[] arguments,

 java.io.File workingDir);

• method(java.lang.String[] arguments,

 java.io.File workingDir,

 com.xmlmind.util.Console console);

• method(java.lang.String[] arguments,

 java.io.File workingDir,

 com.xmlmind.util.Console console,

 com.xmlmind.xml.doc.Document docBeingEdited);

arguments

An array of Strings corresponding to the contents of the argument child elements. Note that the
macro-variables (%0, %1, %D, %p, %C, etc) are substituted with their values in each argument.

workingDir

The temporary directory created each time a process command is executed. Relative paths are
generally relative to this directory.

console

A simple way to report information and non fatal errors to the user of the process command.
Throw an exception to report a fatal error.

docBeingEdited

The document being edited.

73

Process commands

• The method may return a value. If it returns a value, this value is converted to a java.lang.String
using toString() and then returned by the invoke element (à la read [67], for use in a macro command
for example).

• The method may throw any exception.

Examples:

<invoke method="TestInvoke.echo">

 <argument>args={%*}</argument>

 <argument>doc='%D'</argument>

 <argument>pwd='%W'</argument>

 <argument>conf='%C'</argument>

</invoke>

<invoke method="TestInvoke.echo2"/>

<invoke method="TestInvoke.gzip">

 <argument>__doc.xml</argument>

</invoke>

Static methods invoked by the above examples:

public final class TestInvoke {

 public static void echo(String[] arguments, File workingDir,

 Console console) {

 console.showMessage("arguments={" +

 StringUtil.joinArguments(arguments) + "}",

 Console.INFO);

 console.showMessage("workingDir='" + workingDir + "'",

 Console.INFO);

 }

 public static void echo2(String[] arguments, File workingDir,

 Console console, Document docBeingEdited) {

 echo(arguments, workingDir, console);

 console.showMessage("docBeingEdited='" + docBeingEdited.getLocation()

 + "'", Console.INFO);

 }

 public static File gzip(String[] arguments, File workingDir)

 throws IOException {

 if (arguments.length != 1)

 throw new IllegalArgumentException("arguments");

 File inFile = new File(workingDir, arguments[0].trim());

 if (!inFile.isFile())

 throw new FileNotFoundException(inFile.getPath());

 File outFile = new File(inFile.getPath() + ".gz");

 FileInputStream in = new FileInputStream(inFile);

 try {

74

Process commands

 GZIPOutputStream out =

 new GZIPOutputStream(new FileOutputStream(outFile));

 byte[] bytes = new byte[8192];

 int count;

 while ((count = in.read(bytes)) != -1)

 out.write(bytes, 0, count);

 out.finish();

 out.close();

 } finally {

 in.close();

 }

 return outFile;

 }

}

1.18. Element subProcess

<subProcess

name = NMTOKEN (optionally preceded by

 a command namespace)

 parameter = string

/>

Invokes the process command whose name is specified by attribute name. Optional attribute parameter
may be used to parametrize the behavior of the invoked process command.

This element returns the result of its last executed child element which itself returns a result (if any).

Example: the following process command is used to convert a DocBook document to PostScript® or to
PDF.

 <command name="docb.toPSFile">

 <process>

<subProcess name="docb.toPS" parameter='"%0" "%1" "%2" "%3"' />

 <upload base="%4">

 <copyFile file="__doc.%0" to="%4" />

 </upload>

 </process>

 </command>

1.19. Process variables

Almost all child elements and attribute values in a process element can include variables which are
substituted just before the execution of the process-command. Example: <upload base="%0/">.

75

Process commands

DescriptionVariable

A process-command can have a parameter. This string is split like in a
command line. A part of the split parameter can be referenced as variable
%0, %1, %2, ..., %9.

%0, %1, %2, ..., %9, %*

%* can be used to reference the whole parameter of the process-command.

%D is the file name of the document being edited. Example: C:\nov-
el\chapter1.xml.

%D, %d

This variable is replaced by an empty string if the document being edited
is found on a remote HTTP or FTP server.

%d is the URL of the document being edited. Example: file:///C:/nov-
el/chapter1.xml.

%P is the name of the directory containing the document being edited. Ex-
ample: C:\novel.

%P, %p

This variable is replaced by an empty string if the document being edited
is found on a remote HTTP or FTP server.

%p is the URL of the directory containing the document being edited. Ex-
ample: file:///C:/novel.

Note that this URL does not end with a '/'.

%N is the base name of the document being edited. Example: chapter1.xml.%N, %R, %E

%R is the base name of the document being edited without the extension,
if any (sometimes called the root name). Example: chapter1.

%E is the extension of the document being edited, if any. Example: xml.

Note that the extension does not start with a '.'.

Similar to %N, %R, %E except that these variables contain properly escaped
URI components. For example if %R contains "foo bar", then %r contains
"foo%20bar".

%n, %r, %e

%S is the native path component separator of the platform. Example: '\' on
Windows.

%S

User's account name. Example: john.%U

%H is the user's home directory. Example: /home/john.

%h is the URL of the user's home directory. Example: file:///home/john.

%H, %h

Note that this URL does not end with a '/'.

%A is the user's preferences directory. Example: /home/john/.xxe10.

%a is the URL of the user's preferences directory. Example:
file:///home/john/.xxe10.

%A, %a

Note that this URL does not end with a '/'.

76

Process commands

DescriptionVariable

%X is the name of the user's current working directory (that is, the current
working directory of XXE). Example: C:\Users\john\Documents\report.

%X, %x

%x is the URL of the user's current working directory. Example:
file:///C:/Users/john/Documents/report.

Note that this URL does not end with a '/'.

%W is the name of the temporary process directory. Example:
C:\temp\xxe1023E45.

%W, %w

%w is the URL of the temporary process directory. Example:
file:///C:/temp/xxe1023E45.

Note that this URL does not end with a '/'.

%C is the name of the directory containing the XXE configuration file from
which the process command has been loaded. Example: C:\Pro-

gram Files\XMLmind_XML_Editor\addon\config\docbook.

%C, %c

%c is the URL of the above directory. Example: file:///C:/Pro-
gram%20Files/XMLmind_XML_Editor/addon/config/docbook.

Note that this URL does not end with a '/'.

The "%" character can be escaped using "%%". The above variables can be specified as %{0}, %{1}, ...,
%{R}, %{E}, etc, if it helps (see note about escaped URIs [77]).

In addition to the above variables, a process command may reference any Java™ system property or
environment variable. Examples: %{user.home} (for system property user.home), %{HOME} (for envir-
onment variable HOME)

Most attribute and element values described in this documentation as being URIs (data type
anyURI) in fact are not URIs. These attribute and element values can contain %-variables.
They are required to be valid URIs only after the %-variables have been substituted with
their values.

The problem is that URIs may also contain escaped characters which look very much like
references to %-variables. For example, a whitespace must be escaped as "%20", which looks
like a reference to variable %20.

In practice:

1. It is recommended to specify variables as %{0}, %{1}, ..., %{d}, %{E}, etc, rather than
as %0, %1, ..., %d, %E, etc, because it makes clear what is a variable reference and what
is an escaped character.

2. An escaped character such as "%20" should be specified as "%%20". However in practice
there is no need to do so because variable %20 is almost never defined and a reference
to a variable which is not defined is left as is.

Example: relative URI "docs/my report/my.doc.%0", where variable %0 represents a file
extension, should be specified as "docs/my%%20report/my%%20doc.%0". However,

77

Process commands

"docs/my%20report/my%20doc.%0" works fine too as long as the macro-command or the
process commands is passed less than 21 arguments.

2. Commented examples

2.1. Convert explicitly or implicitly selected para to a formalpara

<command name="paraToFormalpara">

 <macro>

 <sequence>

 <command name="selectNode"

 parameter="ancestorOrSelf[implicitElement] para" />

 <command name="toFormalpara" />

 <command name="paste" parameter="to %_" />

 </sequence>

 </macro>

</command>

<command name="toFormalpara">

 <process showProgress="false">

 <copyDocument selection="true" to="in.xml" />

 <transform stylesheet="toFormalpara.xsl" cacheStylesheet="true"

 file="in.xml" to="out.xml" />

 <read file="out.xml" encoding="UTF-8" />

 </process>

</command>

In the above example, toFormalpara.xsl is simply:

<xsl:stylesheet version="1.0"

 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" encoding="UTF-8" />

<xsl:template match="/para">

 <formalpara>

 <xsl:for-each select="@*">

 <xsl:copy/>

 </xsl:for-each>

 <title></title>

 <para>

 <xsl:apply-templates select="node()"/>

 </para>

 </formalpara>

</xsl:template>

<xsl:template match="@*|node()">

 <xsl:copy>

 <xsl:apply-templates select="@*|node()"/>

 </xsl:copy>

78

Process commands

</xsl:template>

</xsl:stylesheet>

Adding the following generic rule to any XSLT style sheet used in interactive process
commands allows to handle the case where the user has selected multiple nodes:

<xsl:template match="/*[./processing-instruction('select-child-nodes')]">

 <xsl:variable name="pi"

 select="./processing-instruction('select-child-nodes')" />

 <xsl:variable name="first" select="substring-before($pi, '-')" />

 <xsl:variable name="last" select="substring-after($pi, '-')" />

 <c:clipboard

 xmlns:c="http://www.xmlmind.com/xmleditor/namespace/clipboard">

 <xsl:for-each select="child::node()[position() >= $first and

 position() <= $last]">

 <xsl:apply-templates select="." />

 </xsl:for-each>

 </c:clipboard>

</xsl:template>

The above macro may be implemented much more efficiently by replacing the invocation
of process command toFormalpara by a script child element of macro. See Example 4.8,
“Convert a DocBook 5 para to a formalpara” [42].

2.2. Convert a DocBook document to RTF

<command name="docb.convertToRTF">

 <macro>

 <sequence>

 <command name="selectFile" parameter="saveFileURL" />

 <command name="docb.toRTF" parameter='"%0" "%1" "%_"' />

 </sequence>

 </macro>

</command>

<command name="docb.toRTF">

 <process>

 <mkdir dir="resources" />

 <mkdir dir="raw" />

 <copyDocument to="__doc.xml">

 <resources match="(https|http|ftp)://.*" />

 <resources match=".+\.(png|jpg|jpeg|gif)"

 copyTo="resources" />

 <resources match="(?:.+/)?(.+)\.(\w+)"

 copyTo="raw" referenceAs="resources/$1.png" />

79

Process commands

 <resources match=".+"

 copyTo="resources" />

 </copyDocument>

 <convertImage from="raw" to="resources" format="png" />

 <mkdir dir="images/callouts" />

 <copyProcessResources resources="xsl/images/draft.png" to="images" />

 <copyProcessResources resources="@xsl/images/callouts/png_callouts.list"

 to="images/callouts" />

 <transform stylesheet="xsl/fo/docbook.xsl"

 file="__doc.xml" to="__doc.fo">

 <parameter name="use.extensions">1</parameter>

 <!-- Cannot work and generates a lot of error messages. -->

 <parameter name="graphicsize.extension">0</parameter>

 <parameter name="paper.type">A4</parameter>

 <parameter name="generate.toc">%0</parameter>

 <parameter name="toc.section.depth">3</parameter>

 <parameter name="section.autolabel">%1</parameter>

 <parameter name="callout.graphics">1</parameter>

 <parameter name="shade.verbatim">1</parameter>

 <parameter name="ulink.show">0</parameter>

 <parameterGroup name="docb.toRTF.transformParameters" />

 </transform>

 <processFO processor="XFC" file="__doc.fo" to="__doc.rtf">

 <parameter name="outputEncoding">Cp1252</parameter>

 <parameterGroup name="docb.toRTF.XFCParameters" />

 </processFO>

 <upload base="%2">

 <copyFile file="__doc.rtf" to="%2" />

 </upload>

 </process>

</command>

The docb.toRTF process command is passed 3 arguments:

%0

For which elements a Table Of Contents (TOC) is to be created. Example: "/book toc
/article toc".

%1

1 if a TOC is to be generated, 0 otherwise.

80

Process commands

%2

The URL of the RTF file to be created.

Images referenced in the DocBook document which are in formats supported by the XFC FO
processor (GIF, JPEG and PNG) will be copied to directory resources/.

Images referenced in the DocBook document which are in formats not supported by the XFC FO
processor will be copied to directory raw/ in order to be converted.

Copy document being edited as __doc.xml in the temporary process directory.

The copied document is flattened: all references to external entities and all XIncludes are expanded.

As specified by extract and resources, references to resources such as external graphics files
(example: <imagedata fileref="XXX"/>) are modified in the copied document to point to copies
which are local to the temporary process directory.

References to really absolute resources are not modified in the copy of the document.

References to PNG, GIF, JPEG graphics files are modified to point to the copies which are made
in directory resources/.

References to other graphics files are modified to point to the converted images that will be generated
in directory resources/. The graphics files in formats other that PNG, GIF, JPEG are copied as
is in directory raw/, waiting to be converted.

Converts all images found in directory raw/ to PNG images created in directory resources/.

Copies resources internally used by the xsl/fo/docbook.xsl XSLT style sheet to where the FO
processor can find them.

Transforms the copy of the document __doc.xml to XSL-FO file __doc.fo.

This parameterGroup allows XXE users to easily customize the XSLT style sheet by adding or
replacing parameters.

Example of such parameterGroup added to XXE_user_preferences_dir/addon/customize.xxe:

 <parameterGroup name="docb.toRTF.transformParameters">

 <parameter name="callout.graphics">0</parameter>

 <parameter name="variablelist.as.blocks">1</parameter>

 </parameterGroup>

Convert XSL-FO file __doc.fo to local RTF file __doc.rtf.

Copies local RTF file __doc.rtf to its user-specified destination.

The element is called upload because it can be used to publish the converted document by sending
it (and all its associated resources, if needed to) to a remote FTP or WebDAV server.

81

Process commands

http://www.xmlmind.com/foconverter/

2.3. Convert ImageDemo document to HTML

The ImageDemo configuration has been created to teach external consultants and local gurus how to
configure XXE for XML documents embedding binary or XML images.

<command name="imgd.convertToHTML">

 <macro>

 <sequence>

 <command name="selectFile" parameter="saveFileURL" />

 <command name="imgd.toHTML" parameter='"%_"' />

 </sequence>

 </macro>

</command>

<command name="imgd.toHTML">

 <process>

 <mkdir dir="resources" />

 <mkdir dir="raw" />

 <copyDocument to="__doc.xml">

 <extract xpath="//imgd:image_ab/@data | //imgd:image_eb" toDir="raw">

 <processingInstruction target="extracted"

 data="resources/{$url.rootName}.png" />

 </extract>

 <extract xpath="//imgd:*/svg:svg" toDir="raw">

 <processingInstruction target="extracted"

 data="resources/{$url.rootName}.png" />

 </extract>

 <resources match="(https|http|ftp)://.*" />

 <resources match=".+\.(png|jpg|jpeg|gif)"

 copyTo="resources" />

 <resources match="(?:.+/)?(.+)\.(\w+)"

 copyTo="raw" referenceAs="resources/$1.png" />

 <resources match=".+"

 copyTo="resources" />

 </copyDocument>

 <convertImage from="raw" to="resources" format="png" />

 <mkdir dir="xslt_graphics" />

 <copyProcessResources resources="xslt_graphics/*" to="xslt_graphics" />

 <transform stylesheet="html.xslt"

 file="__doc.xml" to="__doc.html"/>

 <upload base="%0">

 <copyFile file="__doc.html" to="%0" />

 <copyFiles files="resources/*" toDir="resources" />

 <copyFiles files="xslt_graphics/*" toDir="xslt_graphics" />

 </upload>

 </process>

</command>

82

Process commands

If you can follow the previous example [79], you can follow this one too because they are very similar.
The main differences are:

Instead of extracting the SVG graphics from svg:svg and replacing this element by another one
such as imgd:image_au, it is much simpler to insert an extracted processing instruction inside
imgd:image_ab, imgd:image_eb and svg:svg.

Doing this spares the effort of copying all the image geometry attributes, width, height, con-
tent_width, content_height, etc, from the extracted element to the replacement imgd:image_au
element.

Unlike an RTF file, an HTML file is not self-contained. All the graphics files found in resources/
and in xslt_graphics/ need to be copied along the generated HTML file.

83

Process commands

Chapter 6. Commands written in the Java™
programming language
In the following command reference:

selected node

means

• the explicitly selected single node;

• OR the node (text, comment, processing-instruction or element) containing the caret, if there is
no explicit node selection and if the [implicitNode] option is used in the parameter of the
command;

• OR the element containing the textual node (text, comment, processing-instruction) containing
the caret, if there is no explicit node selection and if the [implicitElement] option is used in
the parameter of the command.

selected nodes

means

• the explicitly selected single node or node range;

• OR the node (text, comment, processing-instruction or element) containing the caret, if there is
no explicit node selection and if the [implicitNode] option is used in the parameter of the
command;

• OR the element containing the textual node (text, comment, processing-instruction) containing
the caret, if there is no explicit node selection and if the [implicitElement] option is used in
the parameter of the command.

argument node

means

• an empty text node, if the parameter of the command ends with #text;

• OR an automatically generated empty element (see configuration element newElementContent
in Section 20, “newElementContent” in XMLmind XML Editor - Configuration and Deployment),
if the parameter of the command ends with an element name;

• OR a copy of an element template (see configuration element elementTemplate in Section 12,
“elementTemplate” in XMLmind XML Editor - Configuration and Deployment), if the parameter
of the command ends with an element template name.

If the argument node is not explicitly specified in the parameter of a command, a dialog box is dis-
played and the user will have to interactively specify it.

Notation used in the synopsis of a command parameter:

• In the synopsis of a command parameter, S means space.

• These non-terminals are sometimes used in the synopsis of a command parameter:

84

../configure/configure.pdf#newElementContent
../configure/configure.pdf#elementTemplate
../configure/configure.pdf#elementTemplate

implicit_selection -> '[implicitNode]' | '[implicitElement]'

argument_node -> '#text' |

 element_name |

 '#template(' element_name ',' template_name ')'

element_name -> Name | '{' namespace_URI '}' NCName

namespace_uri -> anyURI

Common pitfalls to be avoided

A command parameter isnotnamespace-aware•

Namespace prefixes cannot be used inside a command parameter. Notation
{namespace_URI}local_name —the so-called James Clark's notation— must be used
instead.

Example 1: {http://www.w3.org/1999/xhtml}p means p in the ht-

tp://www.w3.org/1999/xhtml namespace.

Example 2: p means p with no namespace.

• Whitespace is significant in a command parameter

Most notably, whitespace is not allowed inside the #template() construct.

Let's use command insert [114] as an example. The following command parameters cannot
work:

 after

after [implicitElement]

before[implicitElement]

after #template(figure , image)

before[implicitElement] #template (figure,image)

While the following command parameters should be OK:

after

after[implicitElement]

before[implicitElement]

after #template(figure,image)

before[implicitElement] #template(figure,image)

1. alert

Parameter syntax:

['[ERROR]' | '[WARNING]' | '[INFO]']? message

85

Commands written in the Java™ pro-
gramming language

Displays an alert dialog box containing the message specified by command parameter. Option [ERROR],
[WARNING] or [INFO] specifies the type of the alert dialog box. Defaults to [INFO].

This command is useful to debug macro-commands.

Examples:

alert Hello, world!

alert [ERROR]Syntax error.

2. add

Parameter syntax:

'before'|'after' [implicit_selection]? S [argument_node]?

Adds argument node [84] before or after selected node [84]. If the grammar forbids to do so, tries the
same operation with the parent of selected node. If the grammar forbids to do so, tries the same operation
with the grand-parent of selected node and so on.

Examples:

add after[implicitElement] para

add before #template(figure,image)

See also addBlockInFlow [86].

3. addAttribute

This command is similar to putAttribute [130] except that it will not replace the attribute if it is already
set on the selected element.

4. addBlockInFlow

Parameter syntax:

['['inline_container_element_name']' S]? block_element_name|block_element_template

Intelligently adds specified block element after the text node containing the caret or after the explicitly
selected element.

block_element_name, block_element_template

Specifies the element to be inserted.

inline_container_element_name

Specifies an element which can contain a mix of text and inline elements. XHTML example: p.
DocBook example: simpara (but not para which can also contain blocks). This element is needed
to teach to the command which are the inline elements of the document type.

86

Commands written in the Java™ pro-
gramming language

When this optional parameter is missing, the list of inline elements is parsed from the value of system
property "configuration_name inlineElementNames". This property may contain a list of fully
qualified element names and/or "container(container_element_name)" shorthands. See TEI example
below.

Initially, this command has been designed to deal with XHTML elements such as li, dd, th, td, div,
which not only can contain blocks (p, ul, table, etc), but can also contain a mix of text and inline ele-
ments (b, i, em, a, etc). This kind of content model is called a “flow”.

Example 6.1. XHTML example

 +--- caret is here

 |

 v

 First| item.

 Second item.

Generic command "add [86] after[implicitElement] {http://www.w3.org/1999/xhtml}pre"
gives:

 First item.

 Second item.

<pre>|</pre>

Smarter command "addBlockInFlow [p] {http://www.w3.org/1999/xhtml}pre" gives:

 First item.

<pre>|</pre>

 Second item.

Examples:

addBlockInFlow [p] table

addBlockInFlow [p] #template({http://www.w3.org/1999/xhtml}table,head_row)

Example 6.2. TEI example

<property name="$c inlineElementNames">

 {http://www.tei-c.org/ns/1.0}abbr

 {http://www.tei-c.org/ns/1.0}add

 ...

 container({http://www.tei-c.org/ns/1.0}pc)

 ...

 {http://www.tei-c.org/ns/1.0}w

</property>

87

Commands written in the Java™ pro-
gramming language

addBlockInFlow {http://www.tei-c.org/ns/1.0}table

container({http://www.tei-c.org/ns/1.0}pc) means any child element of {http://www.tei-
c.org/ns/1.0}pc.

Because property "$c inlineElementNames" is defined, parameter inline_container_ele-
ment_name is not needed by addBlockInFlow.

5. autoSpellChecker

Parameter syntax:

toggle|on|off|isOn|popupMenu

Allows to activate and deactivate the automatic spell checker.

Options:

toggle

if the automatic spell checker is active, the command deactivates it. If the automatic spell checker
is not active, the command activates it.

on

Ensures that the automatic spell checker is active.

off

Ensures that the automatic spell checker is not active.

isOn

Returns Boolean.TRUE if the automatic spell checker is active; otherwise returns Boolean.FALSE.

popupMenu

"autoSpellChecker popupMenu" cannot be bound to a keystroke, only to a mouse click. When the
mouse is clicked on a misspelled word (that is, underlined in red), "autoSpellChecker popupMenu"
displays a popup menu which allows to correct its spelling.

When the toggle, on, off or isOn option has been specified, this command returns a Boolean indicating
whether the automatic spell checker is active.

6. beep

No parameter.

Emits an audio beep.

This command is useful to write macro-commands.

7. cancelSelection

No parameter.

88

Commands written in the Java™ pro-
gramming language

Cancels text or node selection if any.

8. center

No parameter.

Centers node selection, text selection or caret in the document view.

9. checkValidity

['filterDuplicateIDs']? ['commitChanges']?

Checks the validity of the document and, if validity errors are found, displays a modal dialog box (sim-
ilar to the Validity tool) listing them.

Options:

filterDuplicateIDs

If specified, false duplicate ID errors due to the multiple inclusions of the same elements are removed
from the list displayed to the user.

commitChanges

If specified, send a com.xmlmind.xmledit.edit.CommitChangesEvent event to the document
before checking its validity. This event is typically used by controls (for example, a Java™ Swing
text field) embedded in the view of the document. This event instructs these controls that they must
now commit their changes (for example, last characters typed in the text field).

This command has been added mainly to make it easier building simple XML editors using XXE com-
ponents (that is, not XXE itself).

10. confirm

Parameter syntax:

[choices]? message

choices -> single_char_delimiter ('single' '|' 'multiple')

single_char_delimiter [choice]+

choice -> ['*']? choice_value '=' choice_text single_char_delimiter

This command is useful when writing interactive macro-commands. It displays a dialog box containing
specified message and requesting the user to confirm an action (generally the command which follows
this confirm command in the macro). If the user clicks on the OK button, the action is to be performed.
If the user clicks on the Cancel button, the action is to be canceled.

Some choices may be specified to let the user select one or more options before clicking the OK button.

Options are separated using a single character. This delimiter must be chosen in order to be absent from
choice_value, choice_text and message. It's typically '|', '/', '^', '~', or ';'.

89

Commands written in the Java™ pro-
gramming language

A choice comprises an option value and some short text describing the option. The value of an option
which is turned on is immediately preceded by '*'. Examples: "*yes=Yes, I want this!" and "no=No,
please don't.".

Keyword 'single' specifies that the user may select just one option. Keyword 'multiple' specifies that
the user may select zero or more options.

When some choices have been specified and the user clicks the OK button, this commands returns the
values of all selected options separated by a space character.

Examples:

confirm Convert selected text to computeroutput?

confirm |single|*doc=Entire document|sel=Selection only| Print

11. contextualMenu

No parameter.

Displays the right-click, contextual, popup menu. More information in Section 2, “Redefining or extending
the right-click, contextual, popup menu” [21].

12. convert

Parameter syntax:

[implicit_selection]? [S argument_node]?

Converts text selection or selected nodes [84] to argument node [84].

Unlike replace [134] which creates an empty new element, convert transfers the content of the selection
to the new element which is the result of the conversion.

More precisely, in the case of node selection:

• When a single element is selected, all its children, and also all compatible attributes, are transferred
to the result of the conversion.

Example:

<simpara id="p1">the <emphasis>little</emphasis> girl.</simpara>

converted to para gives

<para id="p1">the <emphasis>little</emphasis> girl.</para>

• When several nodes or a single non-element node are selected, all these nodes are given a new parent
element which is the result of the conversion.

Example:

<simpara>Once upon a time.</simpara>

90

Commands written in the Java™ pro-
gramming language

plus

<simpara id="p1">the <emphasis>little</emphasis> girl.</simpara>

can be converted to blockquote and that gives us

<blockquote>
 <simpara>Once upon a time.</simpara>
 <simpara id="p1">the <emphasis>little</emphasis> girl.</simpara>
</blockquote>

Note that when argument node [84] is an element template, command convert copies the attributes of
the element template and ignores its child nodes.

Examples:

convert emphasis

convert [implicitElement] #text

convert #template({http://www.w3.org/1999/xhtml}span,highlight)

See also command wrap [164], a variant of command convert [90] which has a different behavior in the
case of single element selection.

13. convertCase

Parameter syntax:

lower | upper | capital

If there is a text selection, this command converts the character case of this selection. If one or more
nodes are selected, this command converts the character case of all the text contained in these nodes. If
there is no selection of any kind, this command converts the character case from caret position to end
of word, then it moves the caret to the next word.

lower

All characters are converted to lowercase characters.

upper

All characters are converted to uppercase characters.

capital

First character of a word is converted to an uppercase character. The other characters are converted
to lowercase characters.

14. copy

Parameter syntax:

[implicit_selection]?

Copies text selection or selected nodes [84] to system clipboard.

91

Commands written in the Java™ pro-
gramming language

Example:

copy [implicitElement]

15. copyAsInclusion

Parameter syntax:

['[implicitElement]']? ['[multipleInstances]']?

Copies explicitly selected nodes (or implicitly selected element if the [implicitElement] option is
used) to system clipboard. Each node copied to the clipboard is marked as being a reference rather than
plain XML data.

The [multipleInstances] option is a hint which indicates that the reference created by the command
may be found several times, at different places, in the including document. Example: when you include
a chapter in a book, there is no need to specify [multipleInstances], but when you include boilerplate
text like a product name or a company name, then it is recommended to specify [multipleInstances].
This is why the Include tool in XMLmind XML Editor - Online Help always uses option [multipleIn-
stances] to create the references it pastes in a document.

Command copyAsInclusion will not work when one of the selected nodes is a reference or is an inclusion
directive (e.g. an xi:include element).

Command copyAsInclusion cannot work unless the following conditions are met:

• Selected nodes are contained in a document associated to one or more inclusion schemes (e.g. XInclude,
DITA conref).

• One of these inclusion schemes is capable of copying selected nodes as an inclusion.

Examples:

copyAsInclusion [implicitElement]

copyAsInclusion [multipleInstances]

copyAsInclusion [implicitElement][multipleInstances]

Commands copyAsInclusion [92] (generally bound to keystroke Shift+Ctrl+C) and paste [125]
(generally bound to keystroke Ctrl+V) are used to compose modular documents, see the corresponding
tutorial section in the User's Guide.

16. copyChars

Parameter syntax:

[implicit_selection]? ['[separateParagraphs]'|'[separateNodes]']?

Copies characters found in text selection or in selected nodes [84] to system clipboard. Unlike command
copy [91], this command only copies characters.

By default, characters coming from different textual nodes (i.e. text, comment, PI) are simply concatenated
. The following options allow to change this behavior.

92

Commands written in the Java™ pro-
gramming language

../help/help.pdf#includePane

[separateParagraphs]

Automatically add a line separator after the characters of each copied ``paragraph''.

However, this automatic detection of paragraphs is easily puzzled by content models such as XHTML
li, div, td (``flows'').

[separateNodes]

Automatically add a line separator after the characters of each copied textual node.

Examples:

copyChars [implicitElement]

copyChars [implicitNode]

copyChars [implicitElement][separateParagraphs]

copyChars [separateNodes]

17. copyImage

No parameter.

If the explicitly selected element is rendered on screen as an image, the copyImage command copies
this image to the system clipboard. This means that this command cannot function when the document
being edited is displayed as a tree view (no style sheet)

18. cut

Parameter syntax:

[implicit_selection]?

Cuts text selection or selected nodes [84] to system clipboard.

Example:

cut [implicitElement]

19. declareNamespace

Parameter syntax:

[xml="namespace"|xml:prefix="namespace"

 [NEWLINE_CHAR xml="namespace"|xml:prefix="namespace"]*]?

Without any parameter, this command displays a modal dialog box (similar to the dialog displayed by
Tools → Declare Namespace) which lets the user declare new name spaces and/or change the prefixes
of existing name spaces.

The optional parameter specifies a namespace/prefix mapping and may be used to completely replace
the current namespace/prefix mapping of the document being edited. However, in such case, this command
will fail if the document is opened in read-only mode or if the document conforms to a DTD (the
namespace/prefix mapping specified by a DTD is immutable).

93

Commands written in the Java™ pro-
gramming language

20. demoteListItem

No parameter, but a property called "configuration_name listItemSpecification" should be defined.

Convert a paragraph to a list item and a list item to a paragraph, the new element having a greater nesting
level than the original one. This command automatically creates lists or merges adjacent lists when
needed to.

This is the inverse command of promoteListItem [129].

Note that promoteListItem and demoteListItem strictly alternate between paragraphs and list items.
This means that you'll often have to invoke the command twice in a row. For example, in order to create
a nested list, select a list item and then invoke demoteListItem twice. First invocation converts the list
item to a plain paragraph contained in the preceding list item. Second invocation converts this paragraph
to the first item of a new nested list.

For promoteListItem and demoteListItem to function, any of the following conditions should be met:

• A sequence of list items must be explicitly selected.
• A list must be explicitly selected. This is equivalent to selecting all its items.
• A sequence of blocks starting with a paragraph must be explicitly selected.
• A paragraph must be implicitly selected. In order to implicitly select a paragraph, move the caret

anywhere inside it. However if this paragraph is the first child of a list item, then it's the list item
which is implicitly selected.

• A list item to be implicitly selected. In order to implicitly select a list item, move the caret anywhere
inside it.

20.1. Configuring the promoteListItem and demoteListItem commands

Commands promoteListItem and demoteListItem expect a property called "configura-
tion_name listItemSpecification" to be defined. This is done by the means of the property in XMLmind
XML Editor - Configuration and Deployment configuration element.

This property is used to specify what elements are used to represent paragraphs, list items and lists.
Syntax:

spec -> inline_spec? paragraph_spec item_spec list_spec

inline_spec -> inline= [name_list]? \n

paragraph_spec -> paragraph= name_list \n

item_spec -> item= name_list \n

list_spec -> list= name_list \n

name_list -> name_list_item {S name_list_item}*

name_list_item -> name | container(name)

name = non_qualified_name | {namespace_URI}local_part

94

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#property

inline=

This field is optional. Specifies the names of the inline elements.

If the inline= field is specified, this means that a list item may directly contain text and inline ele-
ments in addition to paragraphs, nested lists and other block elements.

Because the list of inline elements can be quite large, it is possible use the container(X) construct
to specify any child element of element X. Example: container(shortdesc) which means any
child element of shortdesc.

If the inline= field is not specified and system property "configuration_name inlineElement-
Names" [87] is defined, then the list of inline elements is parsed from the value of this property.
This property may contain a list of fully qualified element names and/or "container(container_ele-
ment_name)" shorthands. See TEI example below.

Unlike the other fields, an empty inline= field is allowed and may be used to avoid parsing the
value of system property "configuration_name inlineElementNames". See LwDITA example below.

paragraph=

Specifies the names of the elements which must be considered as being paragraphs.

item=

Specifies the names of the elements which must be considered as being list items.

A list item is expected to contain one or more of any of the paragraphs specified using the paragraph=
field. A list item is also expected to contain nested lists and all sorts of other block elements in addition
to paragraphs: blockquote, table, figure, etc.

list=

Specifies the names of the elements which must be considered as being lists.

A list is expected to be a general purpose itemized or ordered list. A list is expected to contain one
or more of any of the items specified using the item= field.

Example 6.3. XHTML listItemSpecification

<property name="$c listItemSpecification">

 inline=container({http://www.w3.org/1999/xhtml}p)

 paragraph={http://www.w3.org/1999/xhtml}p

 item={http://www.w3.org/1999/xhtml}li

 list={http://www.w3.org/1999/xhtml}ul {http://www.w3.org/1999/xhtml}ol

</property>

$c is a shorthand for "current configuration name".

The container() construct here means: any child element of p, the XHTML paragraph.

Namespace prefixes are not supported inside a property value. Hence, the name of an element must
be specified using James Clark's notation [85].

95

Commands written in the Java™ pro-
gramming language

Example 6.4. DITA listItemSpecification

<property name="$c listItemSpecification">

 inline=container(shortdesc) xref indexterm indextermref

 paragraph=p

 item=li

 list=ul ol

</property>

Or equivalently:

<property name="$c inlineElementNames">

 container(shortdesc)

 xref

 indexterm

 indextermref

</property>

<property name="$c listItemSpecification">

 paragraph=p

 item=li

 list=ul ol

</property>

Notice in this second listing, the implicit "inline=" field which is indirectly specified using system
property "$c inlineElementNames".

Example 6.5. DocBook 5 listItemSpecification

<property name="$c listItemSpecification">

 paragraph={http://docbook.org/ns/docbook}para {http://docbook.org/ns/docbook}simpara

 item={http://docbook.org/ns/docbook}listitem

 list={http://docbook.org/ns/docbook}itemizedlist {http://docbook.org/ns/docbook}orderedlist

</property>

Example 6.6. TEI listItemSpecification

<property name="$c inlineElementNames">

 {http://www.tei-c.org/ns/1.0}abbr

 {http://www.tei-c.org/ns/1.0}add

 ...

 container({http://www.tei-c.org/ns/1.0}pc)

 ...

 {http://www.tei-c.org/ns/1.0}w

</property>

<property name="$c listItemSpecification">

 paragraph={http://www.tei-c.org/ns/1.0}p

 item={http://www.tei-c.org/ns/1.0}item

 list={http://www.tei-c.org/ns/1.0}list

</property>

96

Commands written in the Java™ pro-
gramming language

Notice the implicit "inline=" field which is indirectly specified using system property "$c inlineEle-
mentNames".

Example 6.7. LwDITA listItemSpecification

<property name="$c inlineElementNames">

 container(shortdesc)

 xref

 indexterm

 indextermref

</property>

<property name="$c listItemSpecification">

inline=

 paragraph=p

 item=li

 list=ul ol

</property>

Notice the empty "inline=" field which avoids parsing system property "$c inlineElementNames".
(Unlike in full DITA, in LwDITA, an li element may not directly contain text and phrase elements..)

21. delete

Parameter syntax:

['force']? [implicit_selection]?

Deletes text selection or selected nodes [84].

Option force may be used to force the deletion even if the grammar constraining the document forbids
to do so.

Example:

delete force[implicitElement]

22. deleteChar

Parameter syntax:

['backwards']?

Deletes character following the caret in the textual node (text, comment, processing-instruction). If there
is no such character, moves caret to following textual node.

If the backwards option is used, deletes character preceding the caret in the textual node. If there is no
such character, moves caret to preceding textual node.

97

Commands written in the Java™ pro-
gramming language

23. deleteSelectionOrDeleteChar

Parameter syntax:

['backwards']?

• If there is a text or node selection, this selection is deleted.
• If the caret is inside an empty text node, this empty text node is deleted. If the empty text node is the

sole child of its parent element, it is the parent element as a whole which is deleted.
• Otherwise, delete the character found after the caret. If option backwards is specified, delete the

character found before the caret.

This command is intended to be bound to keys Del and BackSpace. See also deleteSelectionOrJoin-
BlockOrDeleteChar [98].

24. deleteSelectionOrJoinBlockOrDeleteChar

Parameter syntax:

['backwards']?

• If there is a text or node selection, this selection is deleted.
• If the caret is inside an empty text node, this empty text node is deleted. If the empty text node is the

sole child of its parent element, it is the parent element as a whole which is deleted.
• If the caret is found at the very end of a block, this block is merged with the immediately following,

similar, block (if any).

To make it simple, a block is a paragraph or a list item. However what is exactly a block must be
specified as explained in Section 50.1, “Specifying splittable blocks” [120].

If option backwards is specified and the caret is found at the very beginning of a block, then this
block is merged with the immediately preceding, similar, block (if any).

• Otherwise, delete the character found after the caret. If option backwards is specified, delete the
character found before the caret.

This command is intended to be bound to keys Del and BackSpace. See also deleteSelectionOrDelete-
Char [98].

25. deleteWord

Parameter syntax:

['backwards']?

Deletes the word following the caret in a textual node (text, comment, processing-instruction). If the
backwards option is used, this command deletes the word preceding the caret.

Note that this command also deletes the whitespace after or before the word if needed to. That is, it will
attempt not to leave superfluous whitespace between words.

98

Commands written in the Java™ pro-
gramming language

26. diffSupport

'on' | 'off' | 'toggle' | 'state' |

'revisions.on' | 'revisions.off' | 'revisions.toggle' | 'revisions.state'

Adds or removes information related to revision support to/from the document being edited.

on

Enable the comparison of revisions of the document being edited. No effect if this comparison is
already enabled.

This is implemented by adding a unique serial number to all the elements of the document. Such
serial numbers are saved as <?xxe-sn> processing instructions. More information in Section 2,
“Elements are given serial numbers” [181].

off

Disable the comparison of revisions of the document being edited. No effect if this comparison is
already disabled.

This is implemented by removing their serial numbers from all the elements of the document.

toggle

Toggle the comparison of revisions of the document being edited.

state

Returns "on" if the comparison of revisions is enabled. Returns "off" otherwise.

revisions.on

Start storing all the revisions of the document being edited in the XML file containing this document.
No effect if this option has already been chosen.

This is implemented by computing the binary delta (VCDIFF algorithm) between a normalized
XML representation of the document being edited and a normalized XML representation of the
document at the beginning of the editing session (that is, before any modification). Such binary
deltas are base-64 encoded in order to be saved in a single <?xxe-revisions> processing instruction
found at the end of the document. More information in Appendix B, Format of the revision his-
tory [183].

Option revisions.on implies option on. If the option of storing all the revisions of
the document being edited has been chosen, then it is also possible to compare the revi-
sions of this document.

Option revisions.off does not implies option off. Stopping to store all the revisions
of the document being edited does not mean that you'll no longer be able to compare
the revisions of this document. For that, you'll have to use option off because option
off implies option revisions.off.

revisions.off

Stop storing all the revisions of the document being edited in the XML file containing this document.
No effect if this option has already been chosen.

99

Commands written in the Java™ pro-
gramming language

https://en.wikipedia.org/wiki/VCDIFF

revisions.toggle

Toggle the storage of revisions in the XML file containing the document being edited.

revisions.state

Returns "revisions.on" if the option of storing all the revisions of the document being edited has
been chosen. Returns "revisions.off" otherwise.

Examples:

diffSupport on

diffSupport state

diffSupport revisions.toggle

27. drag

No parameter.

This command is intended to be bound to a mouse input. It is generally used by the macro-command
which is bound to the drag appEvent in XMLmind XML Editor - Configuration and Deployment. See
example [104].

If the mouse is clicked anywhere inside the node or text selection, this command returns a string repres-
entation of the selection. Otherwise this command first selects the element clicked upon and then returns
a string representation of the newly selected element.

The returned string may be quickly described as follows:

• It the text selection consists only in plain text, this command returns this plain text.
• If the node selection consists only in a single element, this command returns an XML representation

of this element. This XML representation always starts with <?xml version="1.0"?>.
• Otherwise, this command returns an XML representation of the node range in the format of the clip-

board (that is, starting with <?xml version="1.0"?> and using a <ns:clipboard xmlns:ns="ht-
tp://www.xmlmind.com/xmleditor/namespace/clipboard"> wrapper element).

See also ensureSelectionAt [104].

28. drop

Parameter syntax:

string

This command is intended to be bound to a mouse input. It is generally used by the macro-command
which is bound to the drop appEvent in XMLmind XML Editor - Configuration and Deployment.

If the string parameter is an URL or an absolute filename, this command opens the corresponding docu-
ment using command XXE.open [171].

Otherwise, the string parameter is assumed to be plain text or the string representation of one or more
XML nodes. In this case, the drop command displays a popup menu allowing to copy or move the data
being dropped.

100

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#drag_app_event
../configure/configure.pdf#drop_app_event

Note that only the current text or node selection can be moved within a document. Any data other than
the current text or node selection can be copied, but not moved. Moreover, the current text or node se-
lection cannot be moved between two different documents.

DITA topic example:

<binding>

 <appEvent name="drop" />

 <command name="dita.drop" parameter="%{value}" />

</binding>

<command name="dita.drop">

 <macro>

 <choice>

 <sequence>

 <match context="$clickedElement"

 pattern="xref[@href]|xref[@href]//*|

 link[@href]|link[@href]//*|

 longdescref[@href]|

 longquoteref[@href]" />

 <set variable="selectedElement" context="$clickedElement"

 expression="(ancestor-or-self::*[@href])[last()]" />

 <set variable="dropped" context="$selectedElement"

 expression="relativize-uri(uri-or-file-name('%*'))" />

 <get expression="$dropped" />

 <command name="putAttribute" parameter="href '%_'" />

 <get expression="$dropped" />

 <command name="status" parameter="href='%_'" />

 </sequence>

 <!-- Default drop action. -->

 <command name="drop" parameter="%*" />

 </choice>

 </macro>

</command>

29. editAttribute

This command is similar to putAttribute [130] except that it returns the attribute value as a string instead
of setting the attribute on the selected element. This command is only useful to write macro commands.

Macro command example: set attribute style, but when the value chosen by the user is the empty string,
remove attribute style (if any):

<command name="setStyle">

 <macro>

 <sequence>

 <command name="editAttribute"

 parameter="[implicitElement] style" />

 <set variable="style" expression="%_"

101

Commands written in the Java™ pro-
gramming language

 plainString="true" />

 <choice>

 <sequence>

 <test expression="not($style)" />

 <command name="removeAttribute"

 parameter="[implicitElement] style" />

 </sequence>

 <sequence>

 <get expression="replace($style, "'", "\\'", l)" />

 <command name="putAttribute"

 parameter="[implicitElement] style '%_'" />

 </sequence>

 </choice>

 </sequence>

 </macro>

</command>

Escape single quote characters "'" by replacing them by "\'". This is done using XPath function
replace() in XMLmind XML Editor - Support of XPath 1.0.

The value of attribute style may contain whitespace. Therefore it must quoted using single or
double quotes. In the above example, it is quoted using single quotes.

30. editAttributes

Parameter syntax:

['[implicitElement]']?

Displays a modal dialog box (similar to the Attributes tool) which allows to edit the attributes of selected
element.

This command has been added mainly to make it easier building simple XML editors using XXE com-
ponents (that is, not XXE itself).

31. editObject

Same as viewObject [161], except that the helper application is assumed to be an editor instead of a
viewer. If this editor is used to modify the object, then the changes are also automatically applied to the
document being edited.

Example: let's suppose the element of interest contains an image encoded using base 64 (data type
base64Binary).

1. This command examines the first bytes of the image and, using this signature, determines which
helper application to use.

2. If the helper application cannot be determined (because it has not yet been registered using the
Preferences dialog box, Helper Applications section), the user is prompted to specify it.

102

Commands written in the Java™ pro-
gramming language

../xpathsupport/xpathsupport.pdf#xpath_replace

3. It reads the image data from the element, decodes it and saves it to a temporary file.

4. It starts the image editor passing it the file containing the extracted image.

5. After the user quits the image editor, the command detects whether the extracted image has been
modified and, if this is the case, reloads it in the element.

32. editPITarget

Parameter syntax:

['[implicitNode]']? [S target]?

If target is specified, changes the target of the explicitly or implicitly selected processing instruction
to target.

Otherwise displays a dialog box that can be used to interactively specify a new target for the explicitly
or implicitly selected processing instruction.

Examples:

editPITarget [implicitNode]

editPITarget php

editPITarget [implicitNode] php

33. editMediaInfo

Parameter syntax:

[media_url]?

Displays a dialog box letting the user configure selected media element (e.g. HTML5 audio or video)
when this element is represented by a media player embedded in the styled view.

This command cannot work in the tree view. This command cannot work if feature "In the
styled view, render audio and video elements by embedding a media player" in XMLmind
XML Editor - Online Help is not available (no JavaFX) or has been turned off.

Optional parameter is the absolute or relative URL of an audio or video file. A relative URL is relative
to the base URL of selected media element.

Examples:

editMediaInfo

editMediaInfo media/song.mp3

editMediaInfo http://techslides.com/demos/sample-videos/small.mp4

103

Commands written in the Java™ pro-
gramming language

../help/help.pdf#feature.MediaPlayer
../help/help.pdf#feature.MediaPlayer
https://en.wikipedia.org/wiki/JavaFX

34. ensureSelectionAt

Parameter syntax:

['selectElement']?

This command is intended to be bound to a mouse input. It is generally used by the macro-command
which is bound to the drag appEvent in XMLmind XML Editor - Configuration and Deployment.

If the mouse is clicked anywhere inside the node or text selection, this command does nothing at all.
That is, the selection is preserved (typically in order to be dragged). Otherwise this command selects
the node clicked upon.

If the selectElement option is specified and the node clicked upon is not an element (e.g. a text node),
then, it is its parent element which is selected.

XHTML example:

<binding>

 <appEvent name="drag" />

 <command name="xhtml.drag" />

</binding>

<command name="xhtml.drag">

 <macro>

 <sequence>

 <!-- Either drag the selection or

 select+drag the element clicked upon. -->

 <command name="ensureSelectionAt" parameter="selectElement" />

 <choice>

 <sequence>

 <match context="$selectedElement"

 pattern="html:a[@href]|html:a[@href]//*" />

 <set variable="selectedElement" context="$selectedElement"

 expression="(ancestor-or-self::html:a[@href])[last()]" />

 <get context="$selectedElement" expression="resolve-uri(@href)" />

 </sequence>

 <sequence>

 <match context="$selectedElement" pattern="html:img[@src]" />

 <get context="$selectedElement" expression="resolve-uri(@src)" />

 </sequence>

 <!-- Default drag action. -->

 <command name="drag" />

 </choice>

 </sequence>

 </macro>

</command>

See also drag [100].

104

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#drag_app_event

35. execute

No parameter.

This command is mainly used to interactively test other commands.

Displays a dialog box containing a text field where the user can enter the name of a command to be ex-
ecuted, possibly followed by a parameter.

Returns result of executed command if any.

36. executeMenuItem

Parameter syntax:

['[' menu_item_index ']']?

command_name

 | '"' command_name '"' [command_parameter]*

 | ''' command_name ''' [command_parameter]*

Executes command called command_name with optional parameter command_parameter. This command,
typically found in the "current_configuration_name contextualMenuItems" namespace [21], is expected
to return a menu [20].

The default value of menu_item_index is 0, the index of the first menu item. Menu item
#menu_item_index specifies a command which is then executed. executeMenuItem returns the result
of this command, if any.

Example 6.8. Implementing a “click to follow link” facility using executeMenuItem

The executeMenuItem command may be used to implement a “click to follow link” facility which works
whatever the kind of link.

DocBook 5+ example: the implementation leverages the menu items added to the contextual menu when
a link of any kind is implicitly or explicitly selected.

<command name="{$c contextualMenuItems}linkMenuItems">

 <macro>

 <choice>

 <!-- link, xref -->

 <sequence>

 <match context="$implicitElement"

 pattern="*[@linkend]|*[@linkend]//*" />

 <command name="{db5}linkMenuItems1" parameter="linkend" />

 </sequence>

 ...

 <!-- olink -->

 <sequence>

 <match context="$implicitElement" pattern="db:olink|db:olink//*" />

 <command name="{db5}linkMenuItems3" parameter="targetdoc" />

 </sequence>

 </choice>

 </macro>

105

Commands written in the Java™ pro-
gramming language

</command>

<command name="{db5}linkMenuItems1">

 <menu>

 <item label="Follow Link"

 command="{db5}followLink" parameter="%0" />

 <item label="Set Link Target..."

 command="{db5}setLinkEnd" parameter="%0 %0" />

 </menu>

</command>

...

<command name="{db5}linkMenuItems3">

 <menu>

 <item label="Follow Link"

 command="{db5}followLink" parameter="%0" />

 <item label="Set Link Target..." command="db5.setOlinkTarget" />

 </menu>

</command>

The “click to follow link” facility may then be implemented as follows:

<command name="db5.followLinkAt">

 <macro>

 <sequence>

 <command name="selectAt" parameter="begin" />

 <command name="selectAt" parameter="end" />

<command name="executeMenuItem"

 parameter="{$c contextualMenuItems}linkMenuItems" />

 </sequence>

 </macro>

</command>

<binding>

 <mouseClicked button="1" modifiers="mod alt" />

 <command name="db5.followLinkAt" />

</binding>

When the user clicks an internal link, the command which actually gets the job done is then
"{db5}followLink" with parameter "linkend". When the user clicks an olink, the command which
actually gets the job done is then "{db5}followLink" with parameter "targetdoc".

37. extendSelectionAt

No parameter.

Extends node selection if any, text selection otherwise.

See also selectAt [142].

106

Commands written in the Java™ pro-
gramming language

38. extractObject

Parameter:

[attribute_name|'-']? S ['anyURI'|'hexBinary'|'base64Binary'|'XML'|'-']?

 S [file_name]?

This command is the opposite of setObject [154]. It can be used to save to disk the object (generally an
image) represented by explicitly selected element.

attribute_name

This parameter specifies the name of the attribute containing the URL of the object or directly con-
taining the object data encoded in 'hexBinary' or in 'base64Binary'.

If this parameter is absent (or is '-'), it is the selected element itself which contains the URL of the
object or which directly contains the object data in 'hexBinary', 'base64Binary' or XML formats.

anyURI, hexBinary, base64Binary, XML

Specifies how the object is ̀ `stored'' in the element or in the attribute. Data type 'XML' is only allowed
for elements (typically an svg:svg element).

If this parameter is absent (or is '-'), the data type is found using the grammar of the document. Of
course, this cannot be guessed for documents conforming to a DTD (too weakly typed) and for in-
valid documents conforming to a W3C XML or RELAX NG schema.

file_name

Specifies the name of the file created by this command.

'%T' specifies a temporary file name automatically generated by this command.

If specified file name ends with '.%X', this string is replaced by a suffix corresponding to the format
of the object. For example, this command can detect that the data compressed with gzip before being
encoded in base64Binary is in fact GIF image data and in such case, it will replace '.%X' by '.gif'.

If this parameter is absent, a chooser dialog box is displayed to let the user specify where the object
file is to be created.

This command returns the name of the file it has created.

Examples:

extractObject

extractObject fileref anyURI

extractObject -

extractObject data - /tmp/extracted.%X

extractObject - XML %T

39. fail

No parameter.

This command can never be executed.

107

Commands written in the Java™ pro-
gramming language

This command is useful to write macro-commands. See also pass [125].

40. formatTextAs

Parameter syntax:

[filter S]* '#template(' element_name ',' template_title ')'

This command formats the plain text copied to the clipboard after its element template parameter. For
example, if the clipboard contains:

This is the first line.

This is the second line.

This is the third line.

and the element template parameter points to (XHTML example):

<elementTemplate name="PAA.p" selectable="false">

 <p xmlns="http://www.w3.org/1999/xhtml">{$line}</p>

</elementTemplate>

This command will generate and return as a result the following string:

<?xml version="1.0"?>

<ns:clipboard xmlns:ns2="http://www.w3.org/1999/xhtml"

 xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard">

 <ns2:p>This is the first line.</ns2:p>

 <ns2:p>This is the second line.</ns2:p>

 <ns2:p>This is the third line.</ns2:p>

</ns:clipboard>

This command is useful to create macro-commands [25]. It is also used internally by command pas-
teAs [126], which may be seen as a ready-to-use macro-command.

Example:

formatTextAs #template({http://www.w3.org/1999/xhtml}p,PAA.p)

Note how the name of the element is specified using James Clark's notation [85].

See also command pasteAs [126].

40.1. Specifying an element template for use by command formatTextAs

For example, let's suppose the clipboard contains:

This is line #1.

This is line #2.

This is line #3.

This is line #4.

108

Commands written in the Java™ pro-
gramming language

The → symbol represents a tab character.

1. It is strongly recommended to add a selectable="false" in XMLmind XML Editor - Configuration
and Deployment attribute to the element template. Doing this allows not to pollute the list of elements
displayed the Edit tool with what is just a special purpose, private to the formatTextAs command,
element template.

2. The element template must contain one or more text nodes referencing one of the following variables:

ExampleDescriptionVariable

The variable will be substituted 4
times:

The clipboard contains text lines sep-
arated by one or more newline charac-
ters. Open lines are ignored.

{$line}

a. This is→line→#1.

This variable represents one such line. b. This is→line→#2.

c. This is→line→#3.

d. This is→line→#4.

The variable will be substituted 2
times:

The clipboard contains groups of
consecutive text lines separated by
one or more open lines.

{$lineGroup}

a. This is→line→#1.
This is→line→#2.

This variable represents one such
group of lines. b. This is→line→#3.

This is→line→#4.

The variable will be substituted 1
time:

This variable represents the textual
contents of the clipboard, as is. That
is, whitespace is preserved.

{$lines}

a. This is→line→#1.
This is→line→#2.

This is→line→#3.
This is→line→#4.

The variable will be substituted 12
times:

The clipboard contains text lines sep-
arated by one or more newline charac-
ters. Open lines are ignored.

{$field}

• This is

Each line contains one or more fields
separated by tab characters. A field

• line

• #1.
may be empty. That is, two consecut-

• This isive tab characters may be used to
specify an empty field. • ...

This variable represents one such
field.

• line

• #4.

You cannot mix different variables. For example, the same template cannot reference both {$line}
and {$field}.

3. The element which is the parent of the text node referencing the variable is replicated as many times
the variable needs to be substituted.

109

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#elementTemplate

All the elements containing variables are consumed in turn. If there are too many elements containing
variables, the extra elements are discarded.

For example (XHTML example), if the element template is:

<elementTemplate name="PAA.ul" selectable="false">

 <ul xmlns="http://www.w3.org/1999/xhtml">

 A) {$line}

 B) {$line}

 C) {$line}

 D) {$line}

 E) {$line}

 F) {$line}

</elementTemplate>

the above clipboard contents may be used to generate:

<?xml version="1.0"?>

<ns:ul xmlns:ns="http://www.w3.org/1999/xhtml">

 <ns:li>A) This is line #1.</ns:li>

 <ns:li>B) This is line #2.</ns:li>

 <ns:li>C) This is line #3.</ns:li>

 <ns:li>D) This is line #4.</ns:li>

</ns:ul>

4. When the referenced variable is {$field},
• the element which is the parent of the text node referencing the variable is replicated as many

times as there are tab-separated fields in a given text line,
• AND the element which the grand-parent of the text node referencing the variable is replicated

as many times as there are text lines in the clipboard.

For example (XHTML example), if the element template is:

<elementTemplate name="PAA.table" selectable="false">

 <table xmlns="http://www.w3.org/1999/xhtml" border="1">

 <tr>

 <td>{$field}</td>

 </tr>

 </table>

</elementTemplate>

the above clipboard contents may be used to generate:

<?xml version="1.0"?>

<ns:table border="1" xmlns:ns="http://www.w3.org/1999/xhtml">

 <ns:tr>

 <ns:td>This is</ns:td>

 <ns:td>line</ns:td>

 <ns:td>#1.</ns:td>

 </ns:tr>

 <ns:tr>

110

Commands written in the Java™ pro-
gramming language

 <ns:td>This is</ns:td>

 <ns:td>line</ns:td>

 <ns:td>#2.</ns:td>

 </ns:tr>

 <ns:tr>

 <ns:td>This is</ns:td>

 <ns:td>line</ns:td>

 <ns:td>#3.</ns:td>

 </ns:tr>

 <ns:tr>

 <ns:td>This is</ns:td>

 <ns:td>line</ns:td>

 <ns:td>#4.</ns:td>

 </ns:tr>

</ns:table>

5. In some cases you need to replicate an ancestor of the text node referencing the variable rather than
its direct parent. In such case, explicitly add attribute cfg:replicate="true" to all the elements
that are to be replicated.

For example (DocBook example), if the element template is:

<elementTemplate name="PAA.itemizedlist" selectable="false"

xmlns:cfg="http://www.xmlmind.com/xmleditor/schema/configuration">

 <itemizedlist xmlns="">

 <listitem cfg:replicate="true"><para>{$line}</para></listitem>

 </itemizedlist>

</elementTemplate>

the above clipboard contents may be used to generate:

<?xml version="1.0"?>

<itemizedlist>

 <listitem>

 <para>This is line #1.</para>

 </listitem>

 <listitem>

 <para>This is line #2.</para>

 </listitem>

 <listitem>

 <para>This is line #3.</para>

 </listitem>

 <listitem>

 <para>This is line #4.</para>

 </listitem>

</itemizedlist>

111

Commands written in the Java™ pro-
gramming language

40.2. Filtering the text pasted in the document

The element template may be preceded by one or more filters separated by whitespace. These filters are
used to replace some characters (or to discard some characters) in the values of variables {$line},
{$lineGroup}, {$lines} or {$field}. This facility is used for example to discard the leading bullet
from a list item.

The syntax of a filter is:

separator regex_pattern separator replacement separator g?i?m?s?

Example having an empty replacement (means: discard matched characters): "/^\d\.//".

Example using the g and i flags: "^XXE^XMLmind XML Editor^gi".

The same separator character must occur three times within a filter. This character may be any character,
though it's customary to use "/".

The syntax supported for the regular expression pattern is documented in
http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html.

Moreover, extension character class \p{listItemBullet}, which is equivalent to:

\u2022|\u2023|\u00B7|o|*|#|-|[\u2012-\u2015]

|\p{InBoxDrawing}|\p{InDingbats}|\p{InPrivateUseArea}

|(\p{Alnum}(\.|\)))

|(\(\p{Alnum}\))

|([ivxlcdmIVXLCDM]+\.)

may be used to match leading bullets and numeric labels in list items. Example: "/^\p{listItemBul-
let}\s//".

The replacement text may be empty or it may contain $0, $1, ..., $9 variables.

The final separator character may be immediately followed by one or more “flags”:

DescriptionFlag

Replace all occurrences of the matched text. By default, only the first occurrence is
replaced.

g

Enable case-insensitive matching. By default, matching is case-sensitive.i

Enable multiline mode. In multiline mode, expressions "^" and "$" match just after
or just before, respectively, an end of line character or the end of the input sequence.

m

By default, these expressions only match at the beginning and the end of the entire
input sequence.

Enable dotall mode. In dotall mode, expression "." matches any character, including
an end of line character. By default, this expression does not match end of line char-
acters.

s

41. include

Parameter syntax:

112

Commands written in the Java™ pro-
gramming language

http://docs.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

'into' | ('replace'|'before'|'after' [implicit_selection]?)

['[multipleInstances]']?

[referenced_document_URL reference_id ['[absoluteReference]']?]?

into

Pastes a reference into element containing caret, at caret position.

replace

Pastes a reference replacing text selection or selected nodes [84].

before or after

Pastes a reference before of after selected nodes [84].

Commands copyAsInclusion [92] (generally bound to keystroke Shift+Ctrl+C) and paste [125] (generally
bound to keystroke Ctrl+V) are used to compose modular documents.

When parameters referenced_document_URL and reference_id are not specified, command include
is basically an alternative user interface for composing modular documents. It displays a dialog box,
similar to the Include tool, allowing the user to choose which reference to insert.

When parameters referenced_document_URL and reference_id are specified, command include
may be used in macro-commands to automate tasks.

referenced_document_URL

The URL of the document containing the nodes to be referenced. May be relative or absolute. If it
is a relative URL, it is relative to the URL of the including document.

Note that the fact referenced_document_URL is absolute or relative is orthogonal to the [abso-
luteReference] option.

URLs which need an XML catalog in order to be resolved are also supported here (see last example
below). In such case, the [absoluteReference] option is ignored and the including document
references the included document using as is the specified URL.

reference_id

A string identifying the nodes to be referenced:

• DITA-style ID for DITA documents (e.g. my_topic, my_topic/my_paragraph),

• standard ID or "-" for other document types.

If you want to include the root element of a document, you must refer to it by its ID if it has one
(see the section1.xml example below) or as "-" otherwise (see the section2.xml example below).

[absoluteReference]

When this option is specified, the including document references the included document using an
absolute URL. By default, a URL relative to the including document is used.

Note that the effect of this option does not depend on whether referenced_document_URL is itself
absolute or not.

The [multipleInstances] option is a hint which indicates that the reference created by the command
may be found several times, at different places, in the including document. Example: when you include

113

Commands written in the Java™ pro-
gramming language

a chapter in a book, there is no need to specify [multipleInstances], but when you include boilerplate
text like a product name or a company name, then it is recommended to specify [multipleInstances].
This is why the Include tool in XMLmind XML Editor - Online Help always uses option [multipleIn-
stances] to create the references it pastes in a document.

Examples:

include into

include after[implicitElement]

include after[implicitElement][multipleInstances]

include replace[implicitNode]

include into file:/home/john/doc/boilerplate.xml product_name

include before[implicitElement] ../common/Copyright.xhtml copyright [absoluteReference]

include into http://www.acme.com/docs/licence.xml disclaimer [absoluteReference]

include into [multipleInstances] ../common/licence.xml disclaimer

include after section1.xml s1

include after section2.xml -

include into boilerplate:common/trademarks.xml super_foo

42. insert

Parameter syntax:

'into' | ('before'|'after' [implicit_selection]?) S [argument_node]?

If the into option is specified, this command inserts its argument node [84]:

• into the explicitly selected element, after its last child node

• OR, if no element is explicitly selected, into the element containing the caret, at caret position.

If the before option is specified, this command inserts its argument node [84] before the selected
nodes [84].

If the after option is specified, this command inserts its argument node [84] after the selected nodes [84].

Examples:

insert into

insert into ulink

insert before[implicitElement]

insert after[implicitElement] #template(table,simple)

43. insertCharByName

Parameter syntax:

['[DocBook]'|'[$property_name]'|'[DocBookIfNone]']? [S char_spec]?

114

Commands written in the Java™ pro-
gramming language

../help/help.pdf#includePane

Inserts at caret position a character specified by char_spec. If char_spec is not specified, this command
displays a dialog box (supporting auto-completion) which lets the user specify it interactively.

This command honors the Overwrite Mode (OVR) in XMLmind XML Editor - Online Help when this
mode has been turned on.

This command does not insert a reference to a character entity, it inserts a character. It must
be considered as an alternative to using the Characters tool of XMLmind XML Editor.

Parameter char_spec is normally the name of the corresponding character entity. However character
representations other than entity names are also supported. For example, character TAB may now be
specified as any of the following: "\t", "\11", "\x9", "\u0009", "U+0009" ,"	", "	", "011",
"0x9".

The character entities listed in the dialog box displayed by this command are determined as follows:

1. If a [DocBook] parameter has been specified, use the character entities defined in the DocBook 4.4+
DTD1 and this, whatever the schema the document being edited is conforming to.

2. If a [$property_name] parameter has been specified, use the character entities defined in the Java™
properties file which is the value of Java™ property property_name.

3. Use the character entities defined in the DTD to which the document being edited is conforming to.

4. Use the character entities defined in the Java™ properties file which is the value of Java™ property
configuration_name.characterEntities, where configuration_name is the name of the configur-
ation associated to the document being edited.

5. If a [DocBookIfNone] parameter has been specified, use the character entities defined in the DocBook
4.4+ DTD.

The above steps are tried in order until a step succeeds. If all steps fail, this command cannot be executed
and therefore, displays no dialog box at all.

Examples:

insertCharByName

insertCharByName beta

insertCharByName U+03B2

insertCharByName [DocBook]

insertCharByName [DocBook] lambda

insertCharByName [$my_favorite_chars]

insertCharByName [DocBookIfNone]

Example 6.9. MathML example

Let's suppose that the MathML configuration is based on mathml2.xsd and not on mathml2.dtd. Even
without a DTD, you want to be able to insert math characters specified using their entity names
(CircleDot, sum, it, etc). Here's how to do that:

1That is, the character entities defined in XML Entity Declarations for Characters.

115

Commands written in the Java™ pro-
gramming language

../help/help.pdf#overwrite_mode
http://www.w3.org/2003/entities/

a. Create a Java™ properties file defining all the character entities you need (mathml_chars.proper-
ties):

...

CircleDot=\u2299

CircleMinus=\u2296

CirclePlus=\u2295

CircleTimes=\u2297

...

b. Add this property configuration element to the mathml.xxe configuration file:

<property name="MathML.characterEntities"

 url="true">mathml_chars.properties</property>

c. When editing a MathML document, use command insertCharByName without any special option.
Examples:

insertCharByName

insertCharByName InvisibleTimes

insertCharByName af

44. insertCharSequence

Parameter syntax:

first_character S second_character [S third_character]?

Makes it easy and intuitive inserting special characters by typing the same ordinary character two or
three times in a row.

The first time first_character is typed, as expected, first_character is inserted at caret position.
Example: the first time, you type '-' (an ordinary dash), you insert '-'.

The second time first_character is typed, previously inserted first_character is replaced by
second_character. Example: the second time you type '-' , you insert a – special character.

The third time first_character is typed, previously inserted second_character is replaced by
third_character. Example: the third time you type '-' , you insert a — special character. This,
of course, requires third_character to have been specified, which is not mandatory.

This command is useless unless bound to the action of typing first_character.

This command honors the Overwrite Mode (OVR) in XMLmind XML Editor - Online Help when this
mode has been turned on.

Characters may be specified

116

Commands written in the Java™ pro-
gramming language

../help/help.pdf#overwrite_mode

• literally (e.g. "<"),
• OR using their character entity name as defined in the DocBook DTD (whatever the schema to which

the document is conforming),
• OR using some common character representations. For example, character TAB may now be specified

as any of the following: "\t", "\11", "\x9", "\u0009", "U+0009" ,"	", "	", "011", "0x9".

Examples (in the examples below, hexadecimal number 0x00ab is used to represent the French opening
guillemet "«" and octal number 0273 is used to represent the French closing guillemet "»"):

<binding>

 <charTyped char="-" />

 <command name="insertCharSequence" parameter="- ndash mdash" />

</binding>

<binding>

 <charTyped char="<" />

 <command name="insertCharSequence" parameter="< 0x00ab" />

</binding>

<binding>

 <charTyped char=">" />

 <command name="insertCharSequence" parameter="> 0273" />

</binding>

45. insertControlChar

Parameter syntax:

control_character

Inserts specified control character (newline, tab, etc) at caret position. The control character can be
specified using its Java™ notation, for example: "\n" or "\u000a" for the newline character.

This command honors the Overwrite Mode (OVR) in XMLmind XML Editor - Online Help when this
mode has been turned on.

This command will not work if the view of the element in which the control character is to be inserted
rejects such characters.

• In the tree view, only views of elements having xml:space=preserve accept control characters.

• In the styled view, only views of elements having CSS property "white-space: pre;" accept control
characters.

Note that pasting control characters using the paste [125] command always work.

46. insertNewlineOrSplitBlock

No parameter.

117

Commands written in the Java™ pro-
gramming language

../help/help.pdf#overwrite_mode

If the caret is contained in a element which accepts newline characters (e.g. pre, programlisting), a
newline character (&0#xA;) is inserted in this element. Otherwise, if the caret is contained in a block, this
block is split in two parts.

To make it simple, a block is a paragraph, a heading (e.g. XHTML h1, h2, ..., h6 or DocBook bridgehead)
or a list item. However what is exactly a block must be specified as explained in Section 50.1, “Specifying
splittable blocks” [120].

More precisely,

• If the caret is found at the very beginning of a block, a new, similar, empty block is inserted before
the current one.

• If the caret is found at the very end of a block, a new, similar, empty block is inserted after the current
one.

• Otherwise, the current block is split in two parts.

However, if a block is declared as being a heading and if another block has been declared as being the
most common form of paragraphs (see Section 50.1, “Specifying splittable blocks” [120]):

• If the caret is found at the very beginning of a heading, a new, empty paragraph is inserted before this
heading.

• If the caret is found at the very end of a heading, a new, empty paragraph is inserted after this heading.
• Otherwise, the current heading is split in two parts.

When acting on the current block, this command can be executed if there is no selection or if a single
element is explicitly selected. When there is no selection, the current block is automatically determined
among the elements which directly or indirectly contain the caret. When an element is selected, this
element is considered to be the current block if and only if it directly or indirectly contains the caret and
it is listed in the configuration_name blockList property.

This command is intended to be bound to the Enter key.

47. insertNode

Parameter syntax:

'commentInto'|'piInto'|'textInto' |

('commentBefore'|'piBefore'|'textBefore'|'sameElementBefore'|

 'commentAfter'|'piAfter'|'textAfter'|'sameElementAfter' [implicit_selection]?)

[pi_target]?

If option ends with Into, inserts node specified by beginning of option (comment, pi, text, sameElement)
into:

• explicitly selected empty element

• OR element containing caret, at caret position.

If option ends with Before or After, inserts node specified by beginning of option (comment, pi, text,
sameElement) before or after selected node [84].

pi_target may be used to specify the target of the processing instruction to be inserted (options piInto,
piBefore or piAfter). By default, this target is the last one interactively specified using command ed-
itPITarget [103] if any, and placeholder string "target" otherwise.

118

Commands written in the Java™ pro-
gramming language

pi_target is ignored for node types other than processing instructions.

Examples:

insertNode textBefore[implicitElement]

insertNode textInto

insertNode sameElementAfter[implicitElement]

insertNode piInto

insertNode piAfter[implicitNode] php

48. insertOrOverwriteString

Parameter syntax:

string

Inserts or overwrites, depending on overwrite mode, specified string at caret position.

See insertString [121], overwriteString [124], overwriteMode [124].

49. insertSpecialChars

Parameter syntax:

[char_spec]?

Inserts one or more “special characters” at caret position. These characters are selected using a modal
dialog box which is similar to the Characters tool of XMLmind XML Editor.

If parameter char_spec is specified, the dialog box displays a 256-character palette starting at this
character; otherwise the dialog box displays the last character palette chosen by the user.

Several character representations are accepted for char_spec. For example, character TAB may now be
specified as any of the following: "\t", "\11", "\x9", "\u0009", "U+0009" ,"	", "	", "011",
"0x9".

Examples: 9984 is first Dingbats character in decimal notation, 023400 is same character in octal notation
(must start with "0"), 0x2700 is same character in hexadecimal notation (must start with "0x").

insertSpecialChars

insertSpecialChars 0x2700

insertSpecialChars 023400

insertSpecialChars 9984

This command has been added mainly to allow simple XML editors built using XXE components (that
is, not XXE itself) to have the same facilities than XXE.

50. insertSameBlock

Parameter syntax:

119

Commands written in the Java™ pro-
gramming language

['before']?

Insert a new block, similar to the current one, after the current one. If option before is specified, the
new block is inserted before the current one.

To make it simple, a block is a paragraph or a list item. However what exactly is a block must be specified
as explained in Section 50.1, “Specifying splittable blocks” [120].

This command can be executed if there is no selection or if a single element is explicitly selected. When
there is no selection, the current block is automatically determined among the elements which directly
or indirectly contain the caret. When an element is selected, this element is considered to be the current
block if and only if it directly or indirectly contains the caret and it is listed in the configura-
tion_name blockList property.

This command is intended to be bound to keys Ctrl+Enter and Ctrl+Shift+Enter.

50.1. Specifying splittable blocks

A property in XMLmind XML Editor - Configuration and Deployment configuration element having
a "configuration_name blockList" name attribute must be specified in order to make the following
commands work properly: deleteSelectionOrJoinBlockOrDeleteChar [98], insertNewlineOr-
SplitBlock [117], insertSameBlock [119].

The property simply contains the names of the elements which are to be considered as being splittable
blocks by the aforementioned commands.

• The names must be separated by whitespace (of any kind).
• The order of the names in the list is not significant.
• A qualified name must be expressed using the Clark's notation {namespace_URI}local_name, that

is, namespace prefixes are not supported here.
• A name may be preceded by the name of its parent element. Example: listitem and ordered-

list/listitem are both supported.
• Annotation "=paragraph" may immediately follow the name of a block. This annotation marks the

block as being the most common form of paragraph.
• Annotation "=heading" may immediately follow the name of a block. This annotation marks the

block as being a heading. See insertNewlineOrSplitBlock [117] to learn how this annotation is
used.

DocBook 4 example:

<property name="DocBook blockList">

 bridgehead=heading

 simpara para=paragraph

 term

 listitem

 varlistentry

 callout

 step

</property>

Here the name of the configuration for which a block list is being specified is "DocBook".

120

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#property

This list generally contains the names of paragraphs and list items of all kinds. However, it's also
possible to add headings of all kinds.

XHTML example:

<property name="$c blockList">

 {http://www.w3.org/1999/xhtml}p=paragraph

 {http://www.w3.org/1999/xhtml}h1=heading

 {http://www.w3.org/1999/xhtml}h2=heading

 {http://www.w3.org/1999/xhtml}h3=heading

 {http://www.w3.org/1999/xhtml}h4=heading

 {http://www.w3.org/1999/xhtml}h5=heading

 {http://www.w3.org/1999/xhtml}h6=heading

 {http://www.w3.org/1999/xhtml}li

 {http://www.w3.org/1999/xhtml}dt

</property>

Pseudo-variable $c is automatically substituted with the name of the configuration being loaded
by XXE.

51. insertString

Parameter syntax:

string

Inserts specified string at caret position.

52. insertTextOrMoveDot

Parameter syntax:

['after' | 'before']?

When parameter after is specified or when no parameter is specified, this command is similar to "in-
sertNode textAfter[implicitElement]".

When parameter before is specified, this command is similar to "insertNode textBefore[impli-
citElement]".

The only difference with command insertNode [118] is that when a new text cannot be inserted because
there is already a text node after or before selected element, the insertTextOrMoveDot moves the caret
to the existing text node.

53. join

Parameter syntax:

['after']? ['[implicitElement]']?

121

Commands written in the Java™ pro-
gramming language

Joins explicitly or implicitly selected element to its preceding sibling, an element of same type. This
gives a single element containing the child nodes of the two joined elements.

If the after option is used, joins explicitly or implicitly selected element to its following sibling, an
element of same type.

This command is the inverse command of split [157].

Examples:

join after

join [implicitElement]

join after[implicitElement]

54. listAnchors

No parameter.

Displays the "List Anchors and Links" dialog box which lets the user search and select anchors (that
is, any element having an ID) and links.

55. listBindings

No parameter.

Displays a dialog box containing the mouse and key bindings that can be used in current document view.

This command is mainly useful to XML consultants and Java™ developers customizing or extending
XXE.

56. listPlugins

No parameter.

Displays a dialog box containing information about all plug-ins currently loaded into XXE.

This command is mainly useful to XML consultants and Java™ developers customizing or extending
XXE.

57. listRepeatable

Parameter syntax:

[index_in_command_history]?

Without a parameter, this command displays a dialog box letting the user select and execute one of the
last executed repeatable commands.

The index_in_command_history specifies which command found in the command history is to be
executed. Note that index 0 specifies the most recently executed command in the command history.

122

Commands written in the Java™ pro-
gramming language

When this index is specified, the selector dialog box is not displayed and specified command is automat-
ically executed (when this is allowed given current editing context).

Just like repeat [134], this command returns the result of repeated command (if any).

58. moveDotTo

Parameter syntax:

'previousChar'|'nextChar'|'previousWord'|'nextWord'|

'previousTextNode'|'nextTextNode'|'previousElement'|

'nextElement'|'textNodeBegin'|'textNodeEnd'|

'elementBegin'|'elementEnd'|'documentBegin'|

'documentEnd'|'lineBegin'|'lineEnd'|'previousLine'|

'nextLine'|'wordBegin'|'wordEnd'

Moves caret to specified location.

59. moveElement

Parameter syntax:

'up'|'down' ['[implicitElement]']?

Swaps selected element with its preceding sibling node (up option) or with its following sibling node
(down option).

Examples:

moveElement down[implicitElement]

moveElement up

60. normalizeWhiteSpacePre

Parameter syntax:

[tab_width]?

Normalize whitespace in implicitly or explicitly selected element having attribute space="preserve",
typically a program listing.

Normalizing whitespace means:

• replacing tab characters by a number of space characters;
• removing the space characters which are common to the beginning of all text lines, that is, removing

the superfluous “indentation” in the program listing;
• removing the (useless) space characters found just before newline characters.

Optional parameter tab_width represents the maximum number of space characters for an expanded
tab character. If this parameter is not specified, a dialog box is displayed to let the user specify tab_width,
an integer between 1 and 16, typically 4 or 8.

123

Commands written in the Java™ pro-
gramming language

Examples:

normalizeWhiteSpacePre

normalizeWhiteSpacePre 4

61. overwriteMode

Parameter syntax:

'toggle'|'on'|'off'|isOn'

Allows to switch from Insert Mode to Overwrite Mode and vice versa.

Insert Mode

Typing a character inserts it at caret position.

Overwrite Mode

Typing a character replaces the character found at caret position by the typed character. If the caret
is positioned at the very end of a text (or comment or processing-instruction) node, then typed
characters are simply inserted there.

Options:

toggle

Switch from Insert Mode to Overwrite Mode and vice versa.

on

Ensures that Overwrite Mode is turned on.

off

Ensures that Overwrite Mode is turned off.

isOn

Returns Boolean.TRUE if Overwrite Mode is turned on; otherwise returns Boolean.FALSE.

Whatever the option used, this command returns a Boolean indicating whether Overwrite Mode is turned
on.

62. overwriteString

Parameter syntax:

string

Replaces characters found at caret position by specified string.

Example: a text node contains "Hello world!" and the caret is before the "w" of "world". "over-
writeString 'beautiful world!'", replaces "world!" by "beauti" and then inserts "ful world!"
at the end of the text node.

124

Commands written in the Java™ pro-
gramming language

63. pass

Parameter syntax:

[string]?

This command can always be executed, but does nothing at all other than returning its parameter as its
result.

This command is useful to write macro-commands. See also fail [107].

64. paste

Parameter syntax:

'into'|'toOrInto'|'add'|'toOrAdd' | ('to'|'before'|'after' [implicit_selection]?)

([S string]? | ['[systemSelection]']?)

into

Pastes the content of system clipboard into the element containing the caret, at caret position.

to

Pastes the content of system clipboard replacing text selection or selected nodes [84].

Options to, toOrInto, toOrAdd allow to replace the explicitly selected root element of a document
by another element having the same name.

toOrInto

Pastes the content of system clipboard replacing text selection or selected nodes [84].

OR if there is no explicit selection, pastes the content of system clipboard into the element containing
the caret, at caret position.

before, after

Pastes the content of system clipboard before of after selected nodes [84].

add

Pastes the content of system clipboard at any valid position in the document following the caret
position.

toOrAdd

Pastes the content of system clipboard replacing text selection or selected nodes [84].

OR if there is no explicit selection, pastes the content of system clipboard at any valid position in
the document following the caret position.

The system clipboard may contain XML or plain text.

If the [systemSelection] option is used, the content of system selection (always plain text) is used
instead of the content of system clipboard.

125

Commands written in the Java™ pro-
gramming language

If string is specified in the command parameter, this string is used instead of the content of system
clipboard. Note that string is parsed as XML if it begins with "<?xml", otherwise it is considered to
be plain text.

If several nodes are to be pasted, they must be wrapped in a {http://www.xmlmind.com/xmledit-
or/namespace/clipboard}clipboard element. See last example below.

Examples:

paste toOrInto

paste toOrInto[systemSelection]

paste before[implicitElement]

paste before[implicitElement][systemSelection]

paste after <?xml version='1.0'?><p>A paragraph.</p>

paste toOrAdd <?xml version='1.0'?><p>A paragraph.</p>

paste into <?xml version="1.0"?>

 <ns:clipboard xmlns:ns="http://www.xmlmind.com/xmleditor/namespace/clipboard">

 A text line containing bold and <i>italic</i> text.

 </ns:clipboard>

In the above example, for a better readability, the XML strings to be pasted are represented
as is —unescaped— and sometimes indented. In practice, this would prevent the paste
command from working!

An XML string to be pasted:

• must have all its markup delimiters ("<", "&", etc) properly escaped ("<", "&",
etc);

• must not contain any non-significant whitespace (i.e. indentation).

65. pasteAs

Parameter syntax:

'into'|'toOrInto'|'add'|'toOrAdd' | ('to'|'before'|'after' [implicit_selection]?)

S '#template(' element_name ',' template_title ')'

This command is basically equivalent to the following macro-command:

<command name="pasteAs">

 <macro>

 <sequence>

 <command name="formatTextAs" parameter="%1" />

 <command name="paste" parameter="%0 %_" />

 </sequence>

 </macro>

</command>

See commands formatTextAs [108] and paste [125].

126

Commands written in the Java™ pro-
gramming language

66. pasteImageAs

Parameter syntax:

'into'|'toOrInto'|'add'|'toOrAdd' | ('to'|'before'|'after' [implicit_selection]?)

S '#template(' element_name ',' template_title ')'

Variant of command paste [125] which pastes the image copied to the system clipboard as an element.

The element to be pasted is specified using an element template [84]. This element template must have
a descendant element or attribute containing a string starting with "image-URI:". After the "image-
URI:" prefix, an absolute or relativeURI specifies a template for the path of the save files used to store
the pasted images.

XHTML example:

pasteImageAs toOrInto #template({http://www.w3.org/1999/xhtml}img,PIA.img)

where element template PIA.img is:

<elementTemplate name="PIA.img" selectable="false">

 <img xmlns="http://www.w3.org/1999/xhtml"

 src="image-URI:images/img.jpg" alt="???"/>

</elementTemplate>

Using the above command creates files called images/img14135.jpg2, images/img20338.jpg, im-
ages/img60659.jpg, etc, where images/ is a subfolder of the folder containing the document being
edited.

DITA example:

pasteImageAs toOrAdd #template(fig,PIA.fig)

where element template PIA.fig is:

<elementTemplate name="PIA.fig" selectable="false">

 <fig xmlns="">

 <title></title>

 <image href="image-URI:image.png" />

 </fig>

</elementTemplate>

Using the above command creates files called image29116.png, image89803.png, image09833.png,
etc, into the folder containing the document being edited.

67. pasteSystemSelection

No parameter.

2The user is of course prompted to choose a more meaningful filename.

127

Commands written in the Java™ pro-
gramming language

Equivalent to "paste into[systemSelection]" after moving the caret to the text location clicked
upon.

68. pick

Parameter syntax:

title S 'false' [S item]+

OR title S 'true' [S label S item]+

OR title S 'true'|'false' S '@' S URL_or_file_name S encoding|'default'

This command is only useful to write interactive macro commands.

Displays a dialog box with title title containing a list of strings. This command returns the string se-
lected by the user.

This dialog box supports autocompletion. This implies that the items of the pick list are automatically
sorted by their labels.

If second field in the command parameter is false, the list of strings displayed by the dialog box is
[item]+. That is, item is both a possible choice and a label for this possible choice.

If second field in the command parameter is true, the list of strings displayed by the dialog box is [la-
bel]+ but when the user chooses a label, it is the item which follows it in the command parameter which
is returned by this command.

If the third field is character '@', the labels and/or the items are loaded from text file specified by
URL_or_file_name. This file contains labels and/or items separated by newlines ('\n', '\r', or '\r\n').
Open lines are ignored.

The encoding of this text file is specified by encoding. If encoding is specified as default, the encoding
of the text file is the native encoding of the platform, for example Windows-1252 on an US Windows
machine.

Examples:

pick 'Pick a number' false 1 2 3 4 5

pick "Pick a number" true "One" 1 "Two" 2 "Three" 3 "Four" 4 "Five" 5

pick 'Pick a number' false @ "C:\temp\number_list1.txt" default

pick 'Pick a number' true @ file:///tmp/number_list2.txt ISO-8859-1

69. preview

Parameter syntax:

'[lastConverted]' | URL_or_filename

This command is only useful to write interactive macro commands.

Starts a helper application allowing to preview specified URL or file. If an appropriate helper application
has not yet been specified using Options → Preferences, Helper Applications, the user is automatically
prompted to specify this application.

128

Commands written in the Java™ pro-
gramming language

The file or directory to be previewed may be specified as:

[lastConverted]

This specifies the last file or directory selected by the user by the means of the selectConverted-
File [143] command. This command has a "Preview result in helper application" checkbox. This
checkbox must have been checked by the user.

Commands preview and selectConvertedFile are used together in the same macro typically as
follows:

<command name="docb.convertToPS">

 <macro>

 <sequence>

<command name="selectConvertedFile"

 parameter="saveFileURLWithExtension=%0"/>

 <command name="docb.toPSFile" parameter='"%0" "%1" "%_"'/>

<command name="preview" parameter="[lastConverted]"/>

 </sequence>

 </macro>

</command>

URL_or_filename

Specifies the file or directory to be previewed by its URL or its filename. A relative URL is relative
to the URL of the document being edited. A relative filename is relative to the current working dir-
ectory.

Examples:

preview [lastConverted]

preview C:\tmp\test.docx

preview file:///C:/tmp/test.docx

preview images/logo.svg

See also selectConvertedFile [143].

70. promoteListItem

No parameter, but a property called "configuration_name listItemSpecification" [94] should be defined.

Convert a paragraph to a list item and a list item to a paragraph, the new element having a lesser nesting
level than the original one. This command automatically splits lists when needed to.

This is the inverse command of demoteListItem [94]. More Information above [94].

71. prompt

Parameter syntax:

title message [suggested_value]?

This command is only useful to write interactive macro commands.

129

Commands written in the Java™ pro-
gramming language

Displays a dialog box with title title asking the user to answer question message by typing a string in
a text field. Returns typed string.

If suggested_value is specified, the text field is initialized with this value.

Examples:

prompt Question "Number of columns:"

prompt Question "Text align:" left

72. putAttribute

Parameter syntax:

['[implicitElement]']? ['[empty]'|'[dummy]'|'[default]'|'[id]']? ['[simplePrompt]'|'[normalDialog]']?

attribute_name [attribute_value]?

Adds or replaces attribute attribute_name in explicitly or implicitly selected element if the grammar
constraining the document allows to do so.

• If attribute value attribute_value is specified then this value is used as the new value of attribute
attribute_name (this value is checked for validity).

Note that an attribute value containing whitespace must be quoted using single or double quotes. See
alt example below.

For obvious reasons, attribute value attribute_value must not be specified when any of option
[empty], [dummy] or [id] is used.

• Otherwise

• If [empty] has been specified, sets the attribute to the empty string (without checking if it is a
valid value).

• If [dummy] has been specified, sets the attribute to string "???" (without checking if it is a valid
value).

• If [default] has been specified, sets the attribute to its default value if any and to string "???"
otherwise (without checking if it is a valid value).

• If [id] has been specified, sets the attribute to an automatically generated id (without checking if
it is a valid value).

• Otherwise, a dialog box is displayed to let user interactively specify a value (this value is checked
for validity).

This dialog box simply contains a text field if option [simplePrompt] has been specified.

By default or if option [normalDialog] has been specified, this dialog box may contain a more
advanced editor, which is specific to the type of the attribute being edited.

Note that this “normal dialog box” automatically makes use of custom attribute editors defined by
the means of the attributeEditor configuration element in XMLmind XML Editor - Configuration
and Deployment.

130

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#attributeEditor

Examples:

putAttribute cols

putAttribute alt "XMLmind logo"

putAttribute [implicitElement] cols

putAttribute [dummy] cols

putAttribute [implicitElement] [id] xml:id

putAttribute [simplePrompt] href

putAttribute [implicitElement] [simplePrompt] href

See also editAttribute [101] and addAttribute [86].

73. recordMacro

Parameter syntax:

'start'|'stop'|'toggle'|'cancel'|'view'|'get'|'replay'

This command allows to record a sequence of commands and to replay the recorded sequence at will.

start

Starts recording a sequence of commands.

stop

Stops recording the sequence of commands.

toggle

If the recording of a sequence of commands has been started, stops this recording. Otherwise, starts
recording a sequence of commands.

cancel

Cancels the recording of a sequence of commands.

view

Displays a dialog box containing last recorded macro in XML form. Very handy to paste it in an
XXE configuration file (see XMLmind XML Editor - Configuration and Deployment).

get

Returns a string containing last recorded macro in XML form. This option is useful to write higher-
level commands and actions.

replay

Replays recorded sequence of commands.

At most 100 commands can be recorded. Typing contiguous characters, no matter how many, counts as
a single command (insertString [121]).

Attempting to record the following commands will automatically cause macro recording to be canceled:

• any command which has been designed to be bound to a mouse click (e.g. selectAt [142]),

• undo [161], redo [132], repeat [134],

131

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#configure

• any command which fails (example: searching a string and this string is not found),

• any command which cannot be executed given current editing context (most obvious example: "re-
cordMacro replay"; other example: pasting some text to a place where the schema forbids to do so).

Recording interactive command such as "insert [114] after" works as expected: it is the command along
with the element interactively chosen by the user which is recorded, and not the interactive invocation
of "insert after" (i.e. which displays a dialog box).

Recording command execute [105] is fully supported and works as expected: it is the command executed
by execute which is recorded, and not execute itself.

Examples:

recordMacro start

recordMacro stop

recordMacro replay

74. redo

No parameter.

Redo last undone command.

75. refresh

Parameter syntax:

'refresh'|'rebuild' ['[implicitNode]'|'[implicitElement]'|'[implicitDocument]']?

Refreshes or rebuilds selected node [84].

Refresh means: relayout and repaint the view of the selected node.

Rebuild means: recreate the view of the selected node.

If the implicitDocument option is used and if there is no explicit node selection, the entire document
is refreshed or rebuilt.

Examples:

refresh refresh

refresh rebuild[implicitDocument]

76. reinclude

Parameter syntax:

['[all]' | '[implicitElement]']?

132

Commands written in the Java™ pro-
gramming language

When option [all] is specified, this command transcludes all the inclusion directives (e.g. xi:include
elements) found in the document being edited.

Otherwise, this command replaces the selected inclusion directive by up-to-date included nodes. For
this case to work, the explicitly selected element or processing-instruction or the implicitly selected
element (when option [implicitElement] has been specified) is expected to be an inclusion directive.

This command is the inverse of uninclude [161].

77. remark

['edit' | 'delete' | 'deleteAll' |

 'previous' | 'next' | 'first' | 'last']?

Command acting on remarks.

A remark is simply a processing-instruction having "xxe-remark" as its target. This processing-instruction
is typically used to comment changes, for example when reviewing a document. This processing-instruc-
tion is nicely rendered using XXE's built-in CSS stylesheet and also, the Compare tool displays such
processing-instruction in a manner which stands out from the other parts of the changes it has detected.

edit

If a <?xxe-remark> is explicitly selected or if the caret is contained in a <?xxe-remark>,, display
a special dialog box —the remark editor— allowing to edit this processing-instruction.

Otherwise, display the remark editor in order to create a new remark. This new <?xxe-remark> is
inserted before the explicit selection if any, or at caret position otherwise.

delete

Delete explicitly selected <?xxe-remark>, if any. Otherwise if the caret is contained in a <?xxe-
remark>, delete this processing-instruction.

deleteAll

Delete all <?xxe-remark>s.

previous

Select preceding <?xxe-remark> if any.

next

Select following <?xxe-remark> if any.

first

Select first <?xxe-remark> if any.

last

Select last <?xxe-remark> if any.

Examples:

remark

remark edit

133

Commands written in the Java™ pro-
gramming language

remark deleteAll

remark first

78. removeAttribute

Parameter syntax:

['[force]']? ['[implicitElement]']? attribute_name

This command is only useful to write macro commands.

Removes attribute attribute_name in explicitly or implicitly selected element if the grammar constrain-
ing the document allows to do so.

Option [force] may be used to remove specified attribute even if the grammar constraining the document
does not allow to do so.

Examples:

removeAttribute [implicitElement] cols

removeAttribute role

removeAttribute [force] linkend

removeAttribute [force] [implicitElement] linkend

79. repeat

No parameter.

Repeats last repeatable command. Returns result of repeated command (if any).

80. replace

Parameter syntax:

[implicit_selection]? [S argument_node]?

Replaces selected nodes [84] with argument node [84].

Note that XMLmind XML Editor does not allow to replace the root element of a document. However
it is possible to replace all the child nodes of the root element.

Examples:

replace [implicitElement]

replace {http://www.xmlmind.com/xmleditor/schema/configuration}newElementTemplate

81. resizeImage

Parameter syntax:

134

Commands written in the Java™ pro-
gramming language

[attribute_name['='[attribute_value]]]+

This command allows to resize an image by removing one or more attributes and/or setting one or more
attributes to values expressed in pixels.

attribute_name=attribute_value

Specifies that attribute attribute_name must be set to value attribute_value (which may be the
empty string).

An attribute name is specified using the {namespace_URI}local_name notation. Examples: alt, {}alt,
{http://www.w3.org/1999/xlink}:href, xml:id.

attribute_name

Notice there is no '=' sign. Specifies that attribute attribute_name must be removed.

This command has been designed to be bound to the following application events in XMLmind XML
Editor - Configuration and Deployment. These application events are generated by an image-viewport()
in XMLmind XML Editor - Support of Cascading Style Sheets (W3C CSS) when the user drags one of
the handles displayed around the image:

rescale-image

Resize the image, but always preserve its aspect ratio.

resize-image

This application event is generated when the user drags a handle while pressing Ctrl (Cmd on the
Mac). This allows to distort the image.

Binding one of the above application events to a command allows to have one or more of the following
variables substituted in the parameter of the bound command:

%{width}

The new width of the image expressed in pixels.

%{height}

The new height of the image expressed in pixels.

%{preserveAspect}

true if the aspect ratio has been preserved while the user dragged the resize handle; false otherwise.

XHTML example:

<binding>

 <appEvent name="resize-image" />

 <command name="resizeImage"

 parameter="height=%{height} width=%{width}" />

</binding>

<binding>

 <appEvent name="rescale-image" />

 <command name="resizeImage" parameter="height width=%{width}" />

</binding>

135

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#about_application_events
../csssupport/csssupport.pdf#image-viewport

DocBook example:

<binding>

 <appEvent name="resize-image" />

 <command name="resizeImage"

 parameter="contentdepth=%{height} contentwidth=%{width}

 scale scalefit" />

</binding>

<binding>

 <appEvent name="rescale-image" />

 <command name="resizeImage"

 parameter="contentdepth contentwidth=%{width}

 scale scalefit"/>

</binding>

82. resizeTableTemplate

Parameter syntax:

cell_name['|' cell_name]* S command S parameter

This commands displays a dialog box allowing to quickly specify the number of rows and the number
of columns of the new table to be inserted in the document.

More precisely:

• This command executes command command with parameter parameter.

• Command command is expected to insert a new table in the document.

• Parameter parameter is expected to contain a table template specification (syntax: #template(ele-
ment_name,template_title)).

• If the table size specified using the dialog box differs from the size of the template table, then this
command replaces in parameter parameter the original template specification by a custom one prior
to executing command command.

• The effect of this custom template specification in parameter parameter is that the newly inserted
table has the size interactively specified by the user.

DITA simpletable example:

resizeTableTemplate stentry dita.addBlock #template(simpletable,head)

XHTML example (notice "td|th"):

resizeTableTemplate¬

 {http://www.w3.org/1999/xhtml}td|{http://www.w3.org/1999/xhtml}th¬

 addBlockInFlow¬

 #template({http://www.w3.org/1999/xhtml}table,simplest)

See also resizeCALSTableTemplate [137].

136

Commands written in the Java™ pro-
gramming language

83. resizeCALSTableTemplate

Same as resizeTableTemplate [136], except that this command also sets the cols attributes of the tgroup
elements of the new table.

DITA example:

resizeCALSTableTemplate entry dita.addBlock #template(table,head)

DocBook 5 example:

resizeCALSTableTemplate¬

 {http://docbook.org/ns/docbook}entry¬

 db5.addAfter¬

 #template({http://docbook.org/ns/docbook}informaltable,head_row)

84. run

Parameter syntax:

[['[Windows]'|'[Unix]'|'[GenericUnix]'|'[Mac]']? command_line]?

Executes external command line specified by its parameter. If no parameter is specified, prompts user
to input a command line.

Returns output of executed command line (that is, what is printed on stdout in C/Unix parlance).

The command line is executed using /bin/sh on Unix and using cmd.exe on Windows (this means that
run will not work on Windows 9x or Windows ME).

Specified command line may reference helper applications [72] declared using the Preferences dialog
box, Helper Applications section.

Command line may contain variables which are substituted with their values prior to command execution:

%F

File name of a temporary file containing a copy of the selection. This temporary file is created in
the same directory than the directory containing the document being edited.

• If a single element is selected, this element is saved in a DTD-less XML file, having a .xml ex-
tension, encoded using UTF-8.

• If several nodes are selected, the parent element of these nodes are saved in a DTD-less XML
file, having a .xml extension, encoded using UTF-8.

• If there is a text selection or a single textual node is selected, the selected text is saved in a text
file, having a .txt extension, encoded using the native encoding of the platform.

• If there is no explicit selection, the whole document is saved in a XML file, possibly having a
DTD or XML-Schema, having same extension than document being edited, encoded using UTF-
8.

137

Commands written in the Java™ pro-
gramming language

%f

Same as %F except that it is a file: URL.

%d

URL of the document being edited.

%D

File name of the document being edited.

If this variable needs to be substituted and if document being edited is not stored on the local file
system (example: http://dav.acme.com/docs/mydoc.xml), command run cannot be executed.

The "%" character can be escaped using "%%". The above variables can be specified as %{F}, %{f}, %{d},
%{D} if it helps.

If the platform option (that is, [Windows], [Unix], [GenericUnix] or [Mac]) is not specified, the
command line is executed whatever is the platform running XXE.

If the platform option is specified, the command line is executed only if the platform running XXE
matches the value of this options:

[Windows]

Any version of Windows.

[Mac]

Mac OS X.

[GenericUnix]

A Unix which is not Mac OS X (Linux, Solaris, etc).

[Unix]

[GenericUnix] or [Mac].

Examples:

run date

run expand %F

run emacs "%D"

run helper(text/plain) "%D"

run "C:\Program Files\Info ZIP\zip.exe" -r all.zip "C:\temp\misc"

<choice>

 <command name="run" parameter='[Windows] notepad "%D"' />

 <command name="run" parameter='[Unix] emacs "%D"' />

</choice>

85. search

Parameter syntax:

['[' 'i'? 'w'? 'r'? 's'? 'b'? 'x'? ']' S]?

[searched_text]?

138

Commands written in the Java™ pro-
gramming language

Searches specified text from caret position to end of document, or if the b (Backwards) option has been
specified, from caret position to beginning of document.

If searched text is not specified, this command displays a dialog box allowing to specify such text as
well as any of the options.

Searched string, if specified, does not need to be quoted, even if it includes white space. However, be-
ginning and trailing whitespace is removed from searched string before the command is executed.
Therefore, the only way to search text starting and/or ending with whitespace is to quote (using single
quotes or double quotes) the searched string.

Options (order of option letters is not important):

i (Ignore case)

The search is case-insensitive. Example: "foo" matches both "foo" and "Foo".

w (Whole word)

The found string must be a word, that is, the found string must be surrounded by white spaces. Ex-
ample: "foo" matches "foo" but not "foobar".

r (Regular expression)

The searched string must be a valid regular expression. A regular expression is specified in a syntax
similar to that used by Perl.

s (Smart mode)

Searching string "Hello world!" in an XML document is not as obvious as it seems: for example,
is "Hello world!" with word "Hello" contained in an emphasis element followed by text node "
world!" supposed to be found by XXE?

• If this option is selected, the answer is yes. "Hello world!" is found within "Hello
world!" but not within "<p>Hello </p><p>world!</p>".

This mode uses the grammar constraining current document to recognize logically contiguous
text across different types of elements.

• If this option is not selected, the answer is no. Each text node is separated from other text nodes
whatever the type of the element containing it.

b (Backwards)

Search backwards.

x (eXtend text selection)

Extend text selection, if any, in order to include found text.

Examples:

search

search [xwi]

search XMLmind XML Editor

search [r] X\w+d

search "XMLmind "

search ' XML'

139

Commands written in the Java™ pro-
gramming language

http://download.oracle.com/javase/6/docs/api/java/util/regex/Pattern.html

See also searchReplace [140] and xpathSearch [165].

86. searchReplace

Parameter syntax:

[search|searchBackwards|replace|replaceBackwards|

 findAgain|findAgainBackwards]?

Displays a modal dialog box which lets the user search and replace text in the document being edited
(same as the Search tool in XMLmind XML Editor).

The parameter defaults to search.

search

Displays the dialog box configured to be used for a text search from caret position to end of document.

searchBackwards

Displays the dialog box configured to be used for a text search from caret position to beginning of
document.

replace

Displays the dialog box configured to be used for a search/replace operation from caret position to
end of document.

replaceBackwards

Displays the dialog box configured to be used for a search/replace operation from caret position to
beginning of document.

findAgain

The dialog box is not displayed. Repeats last text search from caret position to end of document.

findAgainBackwards

The dialog box is not displayed. Repeats last text search from caret position to beginning of document.

This command has been added mainly to allow simple XML editors built using XXE components (that
is, not XXE itself) to have the same facilities than XXE.

87. searchReplaceElement

Parameter syntax:

[search|searchBackwards|replace|replaceBackwards|

 findAgain|findAgainBackwards|

 replaceAgain|replaceAgainBackwards|

 find search_spec|findBackwards search_spec]?

Displays a (non-modal) dialog box which lets the user search and replace elements in the document being
edited.

The parameter defaults to search.

140

Commands written in the Java™ pro-
gramming language

search

Displays the dialog box ready to be used to search elements from explicitly or implicitly selected
node to the end of the document.

searchBackwards

Displays the dialog box ready to be used to search elements from explicitly or implicitly selected
node to the beginning of the document (backwards).

replace

Displays the dialog box ready to be used to search and replace elements from explicitly or implicitly
selected node to the end of the document.

replaceBackwards

Displays the dialog box ready to be used to search and replace elements from explicitly or implicitly
selected node to the beginning of the document (backwards).

findAgain

The dialog box is not displayed. Repeats last specified search operation starting at explicitly or im-
plicitly selected node and ending at the end of the document.

findAgainBackwards

The dialog box is not displayed. Repeats last specified search operation starting at explicitly or im-
plicitly selected node and ending at the beginning of the document (backwards).

replaceAgain

The dialog box is not displayed. Repeats last specified search and replace operation starting at expli-
citly or implicitly selected node and ending at the end of the document.

replaceAgainBackwards

The dialog box is not displayed. Repeat last specified search and replace operation starting at explicitly
or implicitly selected node and ending at the beginning of the document (backwards).

findsearch_spec

The dialog box is not displayed. Performs specified search operation starting at explicitly or implicitly
selected node and ending at the end of the document.

findBackwardssearch_spec

The dialog box is not displayed. Performs specified search operation starting at explicitly or implicitly
selected node and ending at the beginning of the document (backwards).

search_spec, the argument of find and findBackwards, contains up to 7 fields separated with
whitespace. An empty field is specified as character minus (-) without a quote of any kind. A field
containing whitespace must be quoted (e.g. "1 2 3" or 'a b c'). Character minus (-) when used as an
actual field value must be quoted (that is, "-" or '-').

These 7 fields are:

• Searched element name. This field may contain one or more qualified XML names (e.g. para, {ht-
tp://www.w3.org/1999/xhtml}li) or wildcards (e.g. *, {http://www.w3.org/2000/svg}*).

Note that namespace prefixes are not supported here. A qualified name must be specified using
notation {namespace_URI}local_name, the so-called James Clark's notation.

141

Commands written in the Java™ pro-
gramming language

• Searched attribute name. This field may contain one or more qualified XML names (e.g. href,
xml:lang) or wildcards (e.g. *, {http://www.w3.org/1999/xlink}*).

Note that namespace prefixes are not supported here. A qualified name must be specified using
notation {namespace_URI}local_name, the so-called James Clark's notation.

• Operation used to compare found attribute value with searched attribute value: = (Equals), *= (Con-
tains), ~= (Contains item), =~ (Matches Regular Expression).

• Searched attribute value.

• #text is searched element must contain text, - otherwise.

• Operation used to compare found text with searched text: = (Equals), *= (Contains), =~ (Matches
Regular Expression).

• Searched text.

Examples:

{http://www.w3.org/1999/xhtml}caption - - - - - -

- xml:id - - - - -

"{http://www.w3.org/1999/xhtml}a {http://www.w3.org/1999/xhtml}area" {}href =~ ^http(s)?:// - - -

88. selectAt

Parameter syntax:

['begin'|'extend'|'end']?

begin

Cancels text or node selection if any. Moves caret to character clicked upon, if such character exists.

extend

If caret was moved by previous "selectAt begin", extends text selection to the character clicked
upon.

end

If caret was moved by previous "selectAt begin", does nothing, otherwise selects node clicked
upon.

Parameter is absent

Cancels text or node selection if any. Extends or creates a text selection:
• The beginning of the new text selection is the beginning of old text selection if any, or caret pos-

ition otherwise.
• The end of the new text selection is the character clicked upon.

89. selectFile

Parameter syntax:

142

Commands written in the Java™ pro-
gramming language

[

 ['[' dialog_box_title ']']?

 'openFile'|'saveFile'|'openDirectory'|'saveDirectory'|

 'openFileURL'|'saveFileURL'|'openDirectoryURL'|'saveDirectoryURL'

 [URL_template]?

]?

This command is only useful to write interactive macro commands.

Displays a file chooser dialog box that may be used to select a file or directory, local or remote, existing
or to be created, depending on the first keyword in the parameter. By default, this file selection mode is
openFile which specifies a local, existing, file.

When parameter is openFile, saveFile, openDirectory or saveDirectory, the standard file chooser
dialog box is displayed and the command returns a file or directory name.

When parameter is openFileURL, saveFileURL, openDirectoryURL or saveDirectoryURL, an ``ad-
vanced'' file chooser dialog box is displayed and the command returns a file or directory URL.

The optional URL_template parameter is used to specify the directory initially displayed by the file
chooser dialog box. When saveXXX options are used, this parameter is used, not only to specify initial
directory, but also to suggest a basename for the save file.

The optional dialog_box_title parameter may be used to specify a title for the dialog box. When this
parameter is absent or empty, the dialog box will have a default title which depends on the specified
action.

See also command selectConvertedFile [143], which has been designed to be used in Convert macro-
commands such as docb.convertToHTML1, xhtml.convertToPS, etc.

Examples:

selectFile

selectFile [Save Configuration]saveFile

selectFile [Choose An Icon] openFileURL http://www.acme.com/doc/images/logo.gif

selectFile saveFileURL file:///tmp/article.pdf

90. selectConvertedFile

Parameter syntax:

[

 ['[' dialog_box_title ']']?

 ['[processCommand=' process_command_name ']']?

 'openFile'|'saveFile'|'openDirectory'|'saveDirectory'|

 'openFileURL'|'saveFileURL'|'openDirectoryURL'|'saveDirectoryURL'|

 saveFileWithExtension=extension|saveFileURLWithExtension=extension

143

Commands written in the Java™ pro-
gramming language

 [URL_template]?

]?

Variant of command selectFile [142] specially designed to be used in Convert macro-commands such
as docb.convertToHTML1, xhtml.convertToPS, etc.

Unlike command selectFile, this command is aware of the document being converted, which allows
it to suggest smarter save file names/file URLs.

This command supports two more “modes”:

saveFileWithExtension=file extension, saveFileURLWithExtension=file extension

Identical to mode saveFile [saveFileURL], except that, when no URL_template has been specified,

• saveFile suggests the same file name/file URL as the document being converted, but with an
"out" extension.

• saveFileWithExtension=foo suggests the same file name/file URL as the document being con-
verted but with a "foo" extension.

File extension must not be empty, must not start with a '.' and must not contain spaces or '.'.

This command also has a option [processCommand=process_command_name]. This option adds a "Document
conversion parameters" panel to the dialog box. This panel allows to specify parameters for the first
XSLT stylesheet (configuration element transform) having a named parameter group (configuration
element parameterGroup) found in process command (configuration element command/process) having
specified name.

144

Commands written in the Java™ pro-
gramming language

Figure 6.1. The "Document conversion parameters" panel once expanded

Examples:

selectConvertedFile

selectConvertedFile saveFile

selectConvertedFile [Convert to WordML]saveFileWithExtension=wml

selectConvertedFile [Choose An Icon] openFileURL http://www.acme.com/doc/images/logo.gif

selectConvertedFile saveFileURLWithExtension=ps file:///tmp/article.pdf

selectConvertedFile [] [processCommand=dita.toPS] saveFileURLWithExtension=pdf

Note that when an URL_template has been specified, this URL_template is always suggested as
is by the dialog box. For example, "selectConvertedFile saveFileURLWithExtension=ps
file:///tmp/article.pdf" will suggest "file:///tmp/article.pdf" as a save file URL, and
not "file:///tmp/article.ps".

An empty dialog_box_title may be used to specify default title.

Process command dita.toPS looks like this:

145

Commands written in the Java™ pro-
gramming language

<command name="dita.toPS">

 <process>

 ...

 <transform stylesheet="xsl/fo/fo.xsl" ...>

 ...

 <parameterGroup name="dita.toPS.transformParameters" />

 </transform>

 </process>

</command>

91. selectLink

Parameter syntax:

['[link_type_name]']?

'target' | 'source' | 'nextSource' | 'previousSource' | 'oppositeEnd'

This command allows to navigate between elements acting as link sources (simply called links) and
elements acting as link targets (also called anchors).

This commands works when a linkType configuration element in XMLmind XML Editor - Configuration
and Deployment has been defined in the configuration associated to the document being edited or, more
simply, when the DTD or Schema of the document being edited makes use of ID/IDREF/IDREFS.

This command supports elements which act at the same type as a link source and as a link target (XHTML
example:). It also supports elements which are links to multiple targets
(DocBook example: <callout arearefs="co1 co2">). When there is an ambiguity, this command
displays a dialog box allowing the user to choose the destination.

In some cases (XHTML example:), this command allows to select an des-
tination found in a document other than the one being edited. In such case, the user is prompted to confirm
that she/he really wants to open this other document. This confirmation dialog box also allows the user
to choose to open the other document in read-only mode.

target

An element acting as a link must be implicitly or explicitly selected. Scrolls to and selects the element
which is the target of this link (if found).

source

An element acting as an anchor (that is, a link target) must be implicitly or explicitly selected. Scrolls
to and selects the first element of the document which is a link to this anchor (if found).

nextSource

An element acting as a link must be implicitly or explicitly selected. Scrolls to and selects following
link element targeting the same anchor (if found).

previousSource

An element acting as a link must be implicitly or explicitly selected. Scrolls to and selects preceding
link element targeting the same anchor (if found).

146

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#linkType

oppositeEnd

An element acting as an anchor or acting as a link must be implicitly or explicitly selected. Scrolls
to and selects opposite link end (if found).

An XXE configuration file may contain several linkType elements, each one having a different name.
See Section 18, “linkType” in XMLmind XML Editor - Configuration and Deployment. Unless option
[link_type_name] has been specified, this command acts on all types of links and anchors. If option
[link_type_name] is specified, this command will act only on links and anchors belonging to the
linkType whose name is link_type_name.

Examples:

selectLink target

selectLink [formControls] target

selectLink oppositeEnd

92. selectNode

Parameter syntax:

'parent' | 'child' | 'anyChild' |

'firstChild' | 'lastChild' | 'children' |

'previousSibling' | 'nextSibling' |

'firstSibling' | 'lastSibling' |

'ancestor' | 'ancestorOrSelf' | 'self' |

'descendant' | 'descendantOrSelf' |

'anyDescendant' | 'anyDescendantOrSelf' |

'preceding' | 'precedingOrSelf' |

'following' | 'followingOrSelf' |

'extendToPreviousSibling' | 'extendToNextSibling'

['OrNone' | 'OrNode' | 'OrElement']?

[implicit_selection]?

S [element_name | '#text' | '#comment' | '#processing-instruction']*

A number of keystrokes are bound to this command. This command is also needed to write non-trivial
macro-commands.

parent

Selects parent of selected node [84].

child

Selects previously selected child of selected node [84].

If no child of selected node was previously selected, selects first child node of selected node [84].

Option child has not been designed to be used in macro-commands [25]. This option
has been designed mainly to allow binding Ctrl+DOWN to command selectNode child.
If you need to select the first child of selected element having a given element name or
node type, please use option anyChild instead.

147

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#linkType

anyChild

Selects first found child node of selected node [84] having a given element name or node type. How
to specify the element name or node type searched for is explained in Section 92.1, “List of element
names or node types” [150].

firstChild

Selects first child node of selected node [84].

lastChild

Selects last child node of selected node [84].

children

Selects all the child nodes of selected node [84].

previousSibling

Selects preceding sibling of selected node [84].

nextSibling

Selects following sibling of selected node [84].

firstSibling

Selects first preceding sibling of selected node [84].

lastSibling

Selects last following sibling of selected node [84].

self

Selects selected node [84] if selected node is an element, or parent element of selected node if se-
lected node is a text. This option is mainly useful to test the name of implicitly or explicitly selected
element.

ancestorOrSelf

Selects ancestor of selected node [84], starting at selected node [84]. Searched ancestor is specified
using a list of names. See below [150].

More precisely, lookup starts from selected node, if selected node is an element, or from parent
element of selected node if selected node is a text, comment or processing-instruction node.

ancestor

Selects ancestor of selected node [84], starting at parent of selected node [84]. Searched ancestor
is specified using a list of names. See below [150].

More precisely, lookup starts from parent of selected node, if selected node is an element, or from
grand-parent element of selected node if selected node is a text, comment or processing-instruction
node.

Note that selectNode ancestor one_or_more_element_names selects all the ancestors one after the
other until it reaches the found ancestor. This is equivalent to interactively typing Ctrl+Up until the
desired ancestor is selected. The idea behind that is to be able to use selectNode ancest-
or one_or_more_element_names followed by selectNode child or selectNode descend-

ant one_or_more_element_names in the same macro-command.

148

Commands written in the Java™ pro-
gramming language

descendant

Selects previously selected descendant of selected node [84]. Searched descendant is specified using
a list of element names or node types. See below [150].

If no descendants of selected node were previously selected, searches a descendant node but only
along the first child axis. See also option anyDescendant, which is more general.

descendantOrSelf

Selects previously selected descendant of selected node [84]. Searched descendant is specified using
a list of element names or node types. See below [150].

If no descendants of selected node were previously selected, searches a descendant node but only
along the first child axis. See also option anyDescendantOrSelf, which is more general.

Selected node itself can be explicitly selected if it corresponds to searched node.

anyDescendant

Selects first found descendant node of selected node [84] having a given element name or node
type. How to specify the element name or node type searched for is explained in Section 92.1, “List
of element names or node types” [150].

anyDescendantOrSelf

Selects first found descendant node of selected node [84] having a given element name or node
type. How to specify the element name or node type searched for is explained in Section 92.1, “List
of element names or node types” [150].

Selected node itself can be explicitly selected if it corresponds to searched node.

precedingOrSelf

Selects preceding sibling of selected node [84], starting at selected node [84]. Searched sibling is
specified using a list of names. See below [150].

preceding

Selects preceding sibling of selected node [84], starting at sibling of selected node [84]. Searched
sibling is specified using a list of names. See below [150].

followingOrSelf

Selects following sibling of selected node [84], starting at selected node [84]. Searched sibling is
specified using a list of names. See below [150].

following

Selects following sibling of selected node [84], starting at sibling of selected node [84]. Searched
sibling is specified using a list of names. See below [150].

extendToPreviousSibling

Extends node selection to following sibling of last selected node.

extendToNextSibling

Extends node selection to preceding sibling of last selected node.

Examples:

149

Commands written in the Java™ pro-
gramming language

selectNode childOrNone

selectNode parentOrNode

selectNode children

selectNode nextSibling[implicitElement]

selectNode self section

selectNode ancestorOrSelf[implicitElement] section sect5 sect4 sect3 sect2 sect1

selectNode descendant {http://www.xmlmind.com/xmleditor/schema/configuration}template \

 {http://www.xmlmind.com/xmleditor/schema/configuration}css

selectNode extendToPreviousSibling

selectNode extendToNextSiblingOrElement

92.1. List of element names or node types

A list of element names or node types may be specified in order to conditionally perform a node selection.

Without this list, the specified selectNode command would select a node. Let's call it the candidate
node.

The candidate node is tested against all items in the list, one after the other. If the candidate node matches
any of these items, the candidate node is actually selected.

Element name

Candidate node must be an element having the same name.

#text

Candidate node must be a text node.

#comment

Candidate node must be a comment node.

#processing-instruction

Candidate node must be a processing instruction node.

Example 1: selectNode child[implicitElement] para simpara selects first child of explicitly or
implicitly selected element if and only if this first child is a para or a simpara

Example 2: selectNode anyChild[implicitElement] para simpara selects first found child of
explicitly or implicitly selected element which is a para or a simpara.

Example 3: selectNode ancestor itemizedlist orderedlist variablelist selects first found
ancestor of explicitly selected element which is a list.

92.2. OrNone, OrNode, OrElement modifiers

The OrNone, OrNode, OrElement modifiers may be used to specify fallback behaviors for selectNode
commands which otherwise would fail and therefore would do nothing at all.

OrNone

If specified selectNode command fails to select something new, current selection is canceled.

150

Commands written in the Java™ pro-
gramming language

Example: let explicitly selected node be an empty element. In such case selectNode child fails
and therefore, does nothing at all. But selectNode childOrNone succeeds and cancels current se-
lection.

OrNode

If there is no explicit or implicit node selection to work with, command selectNode explicitly selects
textual node containing caret.

Example: caret is contained in a para and there no explicit selection. In such case, selectNode.par-
ent fails and therefore, does nothing at all. But selectNode.parentOrNode succeeds and selects
the textual node containing the caret.

OrElement

If there is no explicit or implicit node selection to work with, command selectNode explicitly selects
element containing caret.

Example: caret is contained in a para and there no explicit selection. In such case, selectNode.par-
ent fails and therefore, does nothing at all. But selectNode.parentOrElement succeeds and selects
the para containing the caret.

It does not make sense to use OrNone, OrNode, OrElement modifiers and [implicitNode], [impli-
citElement] options in the same selectNode command. In such case, the OrNone, OrNode, OrElement
modifiers are simply ignored.

93. selectNodeAt

Parameter syntax:

['orParent']?

Selects the node clicked upon.

If the orParent option is specified, clicking again, exactly at the same place (i.e. without moving the
mouse at all), selects the parent of the element selected by the previous invocation of this command.

See also extendSelectionAt [106].

94. selectText

Parameter syntax:

['word'|'line'|'all']?

word

Selects the characters of the word containing caret.

line

Selects the text line containing caret.

all

Selects all the characters of the document.

151

Commands written in the Java™ pro-
gramming language

Parameter is absent

Selects all the characters of the textual node (text, comment, processing instruction) containing caret.

95. selectTo

Parameter syntax:

'previousChar'|'nextChar'|'previousWord'|'nextWord'|

'previousTextNode'|'nextTextNode'|'previousElement'|

'nextElement'|'textNodeBegin'|'textNodeEnd'|

'elementBegin'|'elementEnd'|'documentBegin'|

'documentEnd'|'lineBegin'|'lineEnd'|'previousLine'|

'nextLine'|'wordBegin'|'wordEnd'

Extends text selection to specified location.

96. setProperty

Parameter syntax:

['[document]'|'[implicitElement]'|'[implicitNode]']?

['[remove]']?

['[rebuildView]']?

property_name [property_value]?

This command may be used to get, set or remove the property of a node. It is useful for writing macro-
commands.

The default subject of this command is the explicitly selected node. Option [document] allows to select
the document being edited. Option [implicitElement] allows to select the element containing the
caret. Option [implicitNode] allows to select the text, comment or processing-instruction node con-
taining the caret.

property_name specifies the qualified name of the property. Namespace prefixes (except "xml" which
is always predefined) are not supported here. The syntax of a property name is:

property_name = non_qualified_name | {namespace_URI}local_part

property_value specifies the new value of the property. When this value is not specified and option
[remove] has not been specified, this command returns the current value of the property as a string.
When this value is not specified and option [remove] has been specified, this command removes the
property from the node.

Option [rebuildView] allows to rebuild the view of the node for which a property has been added,
updated or removed. This is a convenient alternative to invoking command refresh [132].

Examples:

setProperty myProp Hello world!

setProperty myProp

setProperty [remove] myProp

152

Commands written in the Java™ pro-
gramming language

setProperty [implicitElement][rebuildView] {http://www.acme.com/ns/xxe}p1 1024

setProperty [implicitElement] {http://www.acme.com/ns/xxe}p1

Do not use this command to change the value of property {http://www.xmlmind.com/xmledit-
or/namespace/property}readOnly, instead use command setReadOnly [153].

Note that this command works even its subject node is not editable.

97. setReadOnly

Parameter syntax:

['[view]'|'[document]'|'[implicitElement]'|'[implicitNode]']?

['false'|'true'|'remove'|'toggle']?

The default subject of this command is the explicitly selected node. The default operation is toggle.

If option [view] is specified, this command changes the flag that determines whether or not the current
view of the current document is editable.

Parameter value:

false, remove

Make the current view of the current document non-editable.

true

Make the current view of the current document editable.

toggle

Make the current view of the current document non-editable if it is editable and make it editable if
it is non-editable.

Otherwise, this command changes the value of the {http://www.xmlmind.com/xmledit-

or/namespace/property}readOnly property of specified node.

Parameter value:

false

Set the value of the readOnly property to Boolean.FALSE.

true

Set the value of the readOnly property to Boolean.TRUE.

remove

Removes property readOnly from specified node.

toggle

Set the value of the readOnly property to the inverse of its current value. If specified node has no
readOnly property, it is the value of the nearest ancestor having a readOnly property which is in-
versed.

153

Commands written in the Java™ pro-
gramming language

Examples:

setReadOnly [view]

setReadOnly true

setReadOnly [document]toggle

setReadOnly [implicitElement] remove

See also XXE.setReadOnly [174].

98. setObject

Parameter syntax:

[attribute_name|'-']? S [data_type|'-']? S ['gzip'|'-']? S [URL_or_file]?

data_type --> 'anyURI'|'hexBinary'|'base64Binary'|'XML'

 ['[' file_extension [',' file_extension]* ']']?

Interactive command displaying a dialog box letting the user change the object (generally an image)
represented by explicitly selected element.

attribute_name

This parameter specifies the name of the attribute containing the URL of the object or directly con-
taining the object data encoded in 'hexBinary' or in 'base64Binary'.

If this parameter is absent (or is '-'), it is the selected element itself which contains the URL of the
object or which directly contains the object data in 'hexBinary', 'base64Binary' or XML formats.

data_type (anyURI, hexBinary, base64Binary, XML)

Specifies how the object is to be ``stored'' in the element or in the attribute. Data type 'XML' is only
allowed for elements (typically an svg:svg element).

If this parameter is absent (or is '-'), the data type is found using the grammar of the document. Of
course, this cannot be guessed for documents conforming to a DTD (too weakly typed) and for in-
valid documents conforming to a W3C XML or RELAX NG schema.

A data type may optionally be followed by a list of one or more file extensions. See examples below.
This list is used when a file chooser dialog is displayed to let the user specify which file to use.

gzip

If this parameter is specified, object data is compressed using gzip before being encoded in 'hexBin-
ary' or in 'base64Binary'.

This parameter is ignored for 'anyURI' and 'XML' data types.

If this parameter is absent (or is '-'), data is not compressed before being encoded.

URL_or_file

Specifies the source of the object.

If this parameter is absent, the dialog box may be used to specify this source file.

Examples:

154

Commands written in the Java™ pro-
gramming language

setObject

setObject src anyURI

setObject fileref anyURI[png,jpg,jpeg,gif,svg,svgz]

setObject - hexBinary gzip

setObject location - - file://localhost/icons/apache_pb.gif

setObject - XML - C:\graphics\logo.svgz

setObject - XML[svg]

99. showContentModel

No parameter.

Displays a window (similar to the window displayed by Help → Show Content Model) showing the
content model of implicitly or explicitly selected element. If there is no implicitly or explicitly selected
element (for example, if several nodes have been selected), the window shows the content model of the
root element.

This command has been added mainly to allow simple XML editors built using XXE components (that
is, not XXE itself) to have the same facilities than XXE.

100. showElementReference

No parameter.

Opens in the Web browser the reference documentation of the explicitly or implicitly selected element.

For this command to work, a property in XMLmind XML Editor - Configuration and Deployment called
"Configuration_Name elementReference" must have been defined in the XXE configuration file. This
property specifies one or more reference manual locations separated by whitespace. A location is an
absolute URL which must reference the %{local-name} variable. This variable is substituted with the
local name of the selected element prior to invoking the Web browser in order to open the reference
manual.

DITA examples:

<property name="$c elementReference">http://docs.oasis-open.org/dita/dita/¬

v1.3/os/part2-tech-content/langRef/ditaval/ditaval-%{local-name}.html</property>

<property name="$c elementReference">

http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/¬

langRef/technicalContent/%{local-name}.html

http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/¬

langRef/base/%{local-name}.html

</property>

101. showMatchingChar

Parameter syntax:

')' | '}' | ']'

155

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#property

Inserts specified character at caret position then, if the matching character ('(', '{', '[') is found,
highlights this matching character for half a second. If the matching character is not found, this command
emits an audio beep.

This command honors the Overwrite Mode (OVR) in XMLmind XML Editor - Online Help when this
mode has been turned on.

This command must be bound to the following keystrokes:

 <binding>

 <charTyped char=")" />

 <command name="showMatchingChar" parameter=")" />

 </binding>

 <binding>

 <charTyped char="}" />

 <command name="showMatchingChar" parameter="}" />

 </binding>

 <binding>

 <charTyped char="]" />

 <command name="showMatchingChar" parameter="]" />

 </binding>

Note that a binding such as "<charTyped char="}"/>" may not work on some platforms. For example,
it does not work on Windows when using a French keyboard where '}' is typed by pressing AltGr+}.

102. showColumnRowLabels

Parameter syntax:

['on' | 'off' | 'toggle' | 'state']?

This command may be used to add/remove A1-style labels to tables. These A1-style labels make a table
look a little like a spreadsheet.

This command has obviously no effects on a tree view, only on a styled view. See also Section 10,
“Making a table look like a spreadsheet” in XMLmind XML Editor - Support of Cascading Style Sheets
(W3C CSS).

Options:

on

Make sure that A1-style labels are visible.
off

Make sure that A1-style labels are hidden.
toggle

Change the visibility of A1-style labels.
state

Default option. Does nothing. Just useful to learn whether A1-style labels are currently visible.

This command returns true is A1-style labels are currently visible, false otherwise.

156

Commands written in the Java™ pro-
gramming language

../help/help.pdf#overwrite_mode
../csssupport/csssupport.pdf#spreadsheet
../csssupport/csssupport.pdf#spreadsheet

This command is mainly useful to XML consultants and Java™ developers customizing or extending
XXE.

103. spellCheck

No parameter.

Displays a modal dialog box which allows to check the spelling of the document being edited (same as
the Spell tool in XMLmind XML Editor).

This command has been added mainly to allow simple XML editors built using XXE components (that
is, not XXE itself) to have the same facilities than XXE.

104. split

Parameter syntax:

['[implicitElement]']?

Splits explicitly or implicitly selected element in two parts, the split point being specified by caret position.

105. start

Similar to run [137] except that external command is executed asynchronously (like Windows start or
Unix &).

106. status

Parameter syntax:

message

Displays a message in the status bar found at the bottom of XXE main window.

This command is useful to write macro-commands.

Example:

status Command foo completed

107. toggleCollapsed

Parameter syntax:

[

 ('showLevel' '1'|'2'|'3'|'4'|'5'|'6'|'7'|'8'|'9') |

 'state'|'toggle'|'collapse'|'expand'|'collapseAll'|'expandAll'

]?

157

Commands written in the Java™ pro-
gramming language

The "showLevel N" option allows to expand all the collapsible views of the document up to nesting
level N and to recursively collapse all the collapsible views having a nesting level greater than N. For
example, invoking "toggleCollapsed showLevel 1" or "toggleCollapsed showLevel 2" just after
opening a large DocBook document may be used to display the outline of this document (that is, the list
of its collapsed parts or chapters).

All the other options: state, toggle, collapse, etc, change the state of the nearest collapsible view.

The “nearest collapsible view” is searched like this:

• Search starts at explicitly selected node if any; otherwise at node containing caret.
• If this node is an element and has a collapsible view, search is completed: this view is the ``nearest

collapsible view''.
• Otherwise search continues with the parent of the node.

If this collapsible view is not found, then this command cannot be executed.

If this collapsible view is found, then this command returns a string, "expanded" or "collapsed", which
reflects the state of the collapsible view after applying the operations specified in its parameter.

The default operation is toggle. Supported operations are:

state

Does nothing at all. Allows to obtain the current state, "expanded" or "collapsed", of the collapsible
view.

toggle

Collapses nearest collapsible view if it is expanded and expands nearest collapsible view if it is
collapsed.

collapse

Collapses nearest collapsible view if it is expanded; otherwise has no effect.

expand

Expands nearest collapsible view if it is collapsed; otherwise has no effect.

collapseAll

Collapses nearest collapsible view and then, recursively collapses all its collapsible descendant
views.

expandAll

Expands nearest collapsible view and then, recursively expands all its collapsible descendant views.

Sample bindings (as found in the add-on called "A sample customize.xxe" — download and install it
using Options → Install Add-ons):

<binding>

 <keyPressed code="ESCAPE" />

 <charTyped char="1" />

 <command name="toggleCollapsed" parameter="showLevel 1" />

</binding>

<binding>

158

Commands written in the Java™ pro-
gramming language

 <keyPressed code="ESCAPE" />

 <charTyped char="/" />

 <command name="toggleCollapsed" />

</binding>

<binding>

 <keyPressed code="ESCAPE" />

 <charTyped char="+" />

 <command name="toggleCollapsed" parameter="expandAll" />

</binding>

<binding>

 <keyPressed code="ESCAPE" />

 <charTyped char="-" />

 <command name="toggleCollapsed" parameter="collapseAll" />

</binding>

108. toggleTextStyle

Parameter syntax:

name ['[' attr_specs ']']?

attr_specs -> attr_spec [S 'and' S attr_spec]*

attr_spec -> 'not(' attr_simple_spec ')'

attr_simple_spec -> '@' attr_name ['=' quoted_attr_value]?

This command emulates the behavior of the Bold, Italic, Underline, etc, toggles found in the tool bars
of almost all word-processors. Such toggles add a given text style to text spans not having this text style
and remove a given text style to text spans already having this text style. Hence the name “text style”
toggle.

Note that such toggles do not require some text to be explicitly selected. If the caret is in the middle of
a word, then the toggle acts on this word. If the caret is before or after a word, the toggle acts on this
text location by inserting an empty text span having or on the contrary, not having, the corresponding
text style.

This command supports the node selection in addition to the text selection. For example, if you want to
apply a “text style” to an element in its entirety, suffice to explicitly select it. This is more handy that
selecting all the text this element contains.

name

Name of an element which behaves like a text style. Such elements must have a mixed content and
may contain text as well as other text styles in arbitrary order and number of occurrences.

DocBook 4 example, literal text style:

literal

Equivalent DocBook 5 example:

159

Commands written in the Java™ pro-
gramming language

{http://docbook.org/ns/docbook}literal

Notice in the above example that XML names belonging to a namespace are specified using the
Clark's notation [85].

attr_name

An element which behaves like a text style may have at most one required attribute. When this is
the case, this attribute must be specified in the parameter of the toggleTextStyle command.

DocBook 4 example, external link text style:

ulink[@url]

Equivalent DocBook 5 example:

{http://docbook.org/ns/docbook}link[@{http://www.w3.org/1999/xlink}href]

quoted_attr_value

In some cases, an element which behaves like a text style has an attribute which specifies a given
style. When this is the case, this attribute and its specific value must be specified in the parameter
of the toggleTextStyle command.

DocBook 4 example, bold text style:

emphasis[@role='bold']

Equivalent DocBook 5 example:

{http://docbook.org/ns/docbook}emphasis[@role='bold']

This attribute value may contain a variable. Currently the only supported variable is %{url}.

DocBook 4 example, external link text style:

ulink[@url='%{url}']

or equivalently (|fallback_value, where by default fallback_value is "???", is implicit):

ulink[@url='%{url|???}']

The above specification means: convert the selection to an ulink element having an url attribute.
If the text contained in the selection can be parsed as an absolute URL (e.g. "ht-
tps://www.xml.com/") then use this text as the value of the url attribute, otherwise use "???" as
the value of the url attribute.

attr_spec and attr_spec ... and attr_spec

Operator and means: this text style corresponds to specified element if this element has attributes
matching all attribute specifications.

DITA example 1, external link style:

xref[@href and @scope='external' and @format='html']

160

Commands written in the Java™ pro-
gramming language

DITA example 2, internal link text style:

xref[@href and not(@scope='external')]

not(attr_simple_spec)

Function not() means: this text style does not correspond to specified element if this element has
specified attribute (whatever its value; see DocBook example below) or if this element has specified
attribute value (see DITA example below).

DocBook example, emphasis text style:

emphasis[not(@role)]

DITA example, internal link text style:

xref[@href and not(@scope='external')]

109. undo

No parameter.

Undo last command.

110. uninclude

Parameter syntax:

['[all]' | '[lookupInclusion]']?

When option [all] is specified, this command untranscludes all the included nodes found in the document
being edited. Untranscluding means: replacing some included nodes by the corresponding inclusion
directive (e.g. xi:include element).

Otherwise, this command replaces the selected included nodes by the corresponding inclusion directive.
Unless option [lookupInclusion] has been specified, one of the topmost included nodes must be ex-
plicitly selected. If option [lookupInclusion] has been specified, the selection, or even just the caret,
may be anywhere inside the included nodes.

See also reinclude [132].

111. updateInclusions

No parameters

Updates all the references contained in current document. That is, replaces all included nodes by up-to-
date nodes read from the last saved copy of referenced documents.

112. viewObject

Parameter syntax:

161

Commands written in the Java™ pro-
gramming language

['[implicitElement]']?

 S [attribute_name|'-'

 S ['anyURI'|'hexBinary'|'base64Binary'|'XML']?]?

Opens in associated helper application, the ``object'' contained or represented by implicitly or explicitly
selected element.

This command may be used, for example, to open an image in an external image viewer, to open a PDF
file in Adobe Acrobat Reader, etc.

The parameter may be used to specify where to find the object of interest and also the data type of this
object:

attribute_name

This parameter specifies the name of the attribute containing the URL of the object or directly con-
taining the object data encoded in 'hexBinary' or in 'base64Binary'.

If this parameter is absent (or is '-'), it is the selected element itself which contains the URL of the
object or which directly contains the object data in 'hexBinary', 'base64Binary' or XML formats.

anyURI, hexBinary, base64Binary, XML

Specifies how the object is ̀ `stored'' in the element or in the attribute. Data type 'XML' is only allowed
for elements (typically a svg:svg or a mml:math element).

If this parameter is absent, the data type is found using the grammar of the document. Of course,
this cannot be guessed for documents conforming to a DTD (too weakly typed) and also for invalid
documents conforming to a W3C XML or RELAX NG schema.

When the parameter is absent, this command displays a dialog box allowing the user to choose the attribute
or element of interest from a list.

Helper applications are declared using the Preferences dialog box, Helper Applications section. This
registry is searched to find an application capable of opening the contents of the selected attribute or
element. When no suitable helper application is found in this registry, the user is prompted to specify
one.

Note that this command considers that the default viewer (specified in the Preferences dialog box,
Helper Applications section, Default viewer field; typically a Web browser) should be able to open
HTML, text, GIF, JPEG and PNG files3. Therefore, in last resort, it may end up invoking the default
viewer.

Examples:

viewObject

viewObject [implicitElement]

viewObject fileref anyURI

viewObject - XML

viewObject [implicitElement] {http://www.w3.org/1999/xlink}href

See also editObject [102].

3Command viewObject also considers that the default viewer should be able to open URLs starting with "http://" and "https://".
DocBook example: this is handy for displaying <ulink url="http://www.xmlmind.com/xmleditor/"/>.

162

Commands written in the Java™ pro-
gramming language

113. webSearch

Parameter syntax:

'[' search engine name ']' S [searched words]?

Invoke the web browser in order to perform a web search.

Which search engine to use is specified by search engine name. This search engine must have been
declared as explained in Section 113.1, “Declaring search engines” [163].

The searched text is optionally specified by searched words. When searched words are not specified,
the searched text is the text selected in the active document view.

Examples:

webSearch [Google]

webSearch [Google] XMLmind XML Editor

113.1. Declaring search engines

Search engines are normally declared using Options → Preferences, Web Search section in XMLmind
XML Editor - Online Help.

Alternatively, search engines may be declared in system property WebSearch.services. System property
WebSearch.services must contain search_engine_name/search_engine_URL pairs separated by newline
characters. Open lines are ignored.

When search engines have been declared in both the user preferences (that is, using the Preferences
dialog box) and system property WebSearch.services, those declared in the user preferences supersede
those declared in the system property.

When this system property is missing, this is equivalent to having the following property configuration
element in your customize.xxe file:

<property name="WebSearch.services"><![CDATA[

Google

https://www.google.com/search?q=${searched}&hl=${locale2}&lr=lang_${lang2}

Google (phrase)

https://www.google.com/search?as_epq=${searched}&hl=${locale2}&lr=lang_${lang2}

Wikipedia

https://${lang2}.wikipedia.org/w/index.php?title=Special%3ASearch&search=${searched}&fulltext=Search

TheFreeDictionary

https://${lang2}.thefreedictionary.com/${searched}

Wiktionary

https://${lang2}.wiktionary.org/wiki/${searched}

Google Translate

163

Commands written in the Java™ pro-
gramming language

../help/help.pdf#webSearchOptions

https://translate.google.com/?q=${searched}&sl=${lang2}&tl=fr

]]></property>

The above URI translates some text to French (&tl=fr). If you want to specify another target lan-
guage, simply replace the language code for French, fr, by another language code. For example,
Italian: https://translate.google.com/?q=${searched}&sl=${lang2}&tl=it.

The following variables are substituted in search_engine_URL:

DescriptionVariable

Searched text.${searched}

The language of the user interface (GUI) of XXE.${locale}

Same as ${locale}, but just the first two ISO 639-1 letter codes. Example:
if ${locale} is fr-CA, then ${locale2} is fr.

${locale2}

The language of searched text. This language is automatically determined
as follows:

${lang}

• This language is the value of attribute languageAttribute of the
spellCheckOptions configuration element in XMLmind XML Editor
- Configuration and Deployment.

When languageAttribute is not specified, the attribute lookup uses
xml:lang.

• When the searched text is the selected text, the lookup starts at the ele-
ment containing the caret.

When the searched text is specified in the parameter of the command,
the lookup starts (and ends) at the root element of the document.

• If the attribute lookup didn't give any result, the language used here is
the value of attribute defaultLanguage of the spellCheckOptions
configuration element in XMLmind XML Editor - Configuration and
Deployment.

When attribute defaultLanguage is not specified, the language used
here is taken from field "Default language" of the "Check Spelling"
dialog box in XMLmind XML Editor - Online Help.

Same as ${lang}, but just the first two ISO 639-1 letter codes.${lang2}

The value of a variable is automatically escaped if needed too. For example, "vin rosé" becomes
"vin%20ros%C3%A9".

114. wrap

A variant of the convert [90] command. The unique difference is that when a single element is selected,
the selected element is given a new parent element.

Example:

164

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#spellCheckOptions
../configure/configure.pdf#spellCheckOptions
../configure/configure.pdf#spellCheckOptions
../configure/configure.pdf#spellCheckOptions
../help/help.pdf#checkSpellingDialog
../help/help.pdf#checkSpellingDialog

<simpara id="p1">the <emphasis>little</emphasis> girl.</simpara>

wrapped in a note gives

<note>
 <simpara id="p1">the <emphasis>little</emphasis> girl.</simpara>
</note>

This is different from command convert [90] which can be used to “morph” selected element to another
kind of element. For example, convert [90] cannot wrap the above simpara in a note but can morph it
to a para.

Examples:

wrap

wrap [implicitElement] div

115. xIncludeText

Parameter syntax:

[file_or_URL]?

Includes at caret position the contents of a text file (of any kind: XML, HTML, .bat, C/C++, etc). This
command allows to easily create documents containing xi:include parse="text" elements. Thus,
this command is disabled when the document being edited does not support the XInclude inclusion
scheme.

Optional parameter file_or_URL specifies the location of the text file to be included. When this para-
meter is not specified, a file chooser dialog box is displayed allowing to choose the text file to be included.

Examples:

xIncludeText

xIncludeText /home/john/src/hello.c

116. xpathSearch

Parameter syntax:

[implicit_selection]? [XPath_expression]?

Evaluates specified XPath 1.0 expression in the context of selected node [84].

The evaluation of the XPath expression must return a nodeset. If this nodeset exclusively contains con-
tiguous siblings, all the nodes in the nodeset are selected. Otherwise, first node (in document order) of
the nodeset is selected.

If the evaluation of the expression returns attributes, the corresponding elements are selected.

It is not possible to select the document node or sibling nodes of the root element.

165

Commands written in the Java™ pro-
gramming language

http://www.w3.org/TR/xinclude/
http://www.w3.org/TR/xpath

Note that for this command, implicit_selection defaults to [implicitNode].

If XPath_expression is not specified, a dialog box is displayed. This dialog box may be used to specify
arbitrarily complex XPath 1.0 expressions.

When this command is used interactively, qualified names found in the XPath expression may be specified
using the namespace prefixes defined in the document. Note that for a greater ease of use, the default
namespace if any is also considered when parsing element names. DocBook 5 example: following::para
is equivalent to following::db:para.

When this command is used in an XXE configuration file, namespace prefixes may be different in the
configuration file and in the document being edited so it's safer to use the {namespace_URI}local_part
notation.

Examples:

xpathSearch

xpathSearch [implicitNode]

xpathSearch //@revisionflag

xpathSearch [implicitElement] preceding::li

xpathSearch [implicitElement] following::xs:complexType[1]

xpathSearch [implicitElement] following::{http://www.w3.org/2001/XMLSchema}complexType[1]

117. XXE.close

Parameter syntax:

[file_name | URL]?

If a file name or an URL has been specified in the parameter, closes the document having this location;
otherwise closes the active document.

Returns CommandResult.CANCELED if user has canceled the command. Otherwise, returns Com-
mandResult.DONE.

118. XXE.compare

Parameter syntax:

['[verticalSplit]']? original_file_or_URL [revised_file_or_URL]?

Automate the comparison of two revisions of the same initial document for which the comparison of
revisions has been enabled (Background information about the compare revisions feature: the Tools →
Revisions submenu in XMLmind XML Editor - Online Help, the Compare tool in XMLmind XML Editor
- Online Help.)

The original document is specified by original_file_or_URL. This path may be a filename or an URL.
A relative filename is relative to the current working directory. A relative URL is relative to the active
document of XXE.

The revised copy is specified by revised_file_or_URL. When this parameter is absent, the revised
copy is the active document of XXE.

166

Commands written in the Java™ pro-
gramming language

https://www.w3.org/TR/xpath/
../help/help.pdf#revisionsMenu
../help/help.pdf#revisionsMenu
../help/help.pdf#comparePane

If option [verticalSplit] is specified, this command ensures that the document area is displayed is
split vertically in two parts (as if the user checked Window → Split Windows Vertically).

Examples:

XXE.compare [verticalSplit] art23.xml~

XXE.compare ../old_docs/art23.xml

XXE.compare file:/home/john/docs/art23.xml file:/home/john/old_docs/art23.xml

Useful macro-command making use of this command: compare a document with its backup file (having
a '~' suffix) automatically created by XXE:

<command name="compareWithBackup">

 <macro>

 <sequence>

 <choice>

 <command name="XXE.open [171]" parameter="[checkIsOpened] %{d}~"/>

 <command name="XXE.open" parameter="%{d}~"/>

 </choice>

<command name="XXE.compare" parameter="[verticalSplit] %{d}~"/>

 </sequence>

 </macro>

</command>

119. XXE.edit

Parameter syntax:

['[master=' [master_document_URL]? ']']?

['[confirm]']? ['[readOnly]'|'[readWrite]']? [file_name | URL]+

Opens a document in XXE, unless it is already opened, in which case this command just brings all its
views to front and makes this document the “active” document.

Note that it's possible to specify several documents to be opened. In this case, it's first specified document
which is made the “active” one.

Parameters:

[master=master_document_URL]

Advanced, rarely needed, option. No effect if the document is already opened in XXE. Informs
XXE that the document is possibly a module which is being opened from master document mas-
ter_document_URL. URL master_document_URL defaults to the URL of the document from which
the XXE.edit command has been invoked.

[confirm]

When the document is not already opened in XXE, this option may be used to display a dialog box
asking the user to confirm that she/he really wants to open this document in XXE. This dialog box
also allows the user to specify whether the document is to be opened in read-only mode4.

4The initial state of the read-only check box found in this dialog box is of course taken from parameter [readOnly].

167

Commands written in the Java™ pro-
gramming language

[readOnly]

Allows to open in read-only mode the document specified by the other parameters.

[readWrite]

Allows to open in normal read-write mode the document specified by the other parameters.

file_name or URL

Opens or activates specified document.

An URL may have a fragment. Example: file:/home/john/docs/report122211/report.xml#con-
clusion. If the element specified by fragment exists, XXE will automatically scroll to show this
element and then it will select it.

Returns CommandResult.DONE having newly opened or newly activated com.xmlmind.xml.doc.Document
as its value (for use by higher-level commands) or CommandResult.FAILED if specified document is
not already opened in the editor and fails to be opened.

DocBook example: edit other DocBook document referenced in the url attribute of implicitly or explicitly
selected ulink element.

<command name="docb.editDocument">

 <macro>

 <sequence>

 <get context="$implicitElement/@url" expression="resolve-uri(.)" />

 <command name="XXE.edit" parameter="%_" />

 </sequence>

 </macro>

</command>

120. XXE.editInclusion

Parameter syntax:

['[readOnly]']?

If an included element or node is implicitly or explicitly selected, edit in XXE the document which is
the source of the inclusion. Equivalent to menu item Edit → Reference → Edit Referenced Document.

When option [readOnly] has been specified and the referenced document needs to be opened in XXE,
then this document is opened in read-only mode.

Examples:

XXE.editInclusion

XXE.editInclusion [readOnly]

121. XXE.masterDocumentControl

'set' | 'unset' | 'toggle' | 'state' | 'refresh' | 'reset'

168

Commands written in the Java™ pro-
gramming language

This command allows to create a document set containing a master document of any kind5 and its
module documents.

By grouping a master document and its module documents, you inform XMLmind XML Editor (XXE)
that all the module documents referenced or included, directly or indirectly, by the master document are
related. When XXE knows that some of the opened documents are related:

• it will more thoroughly check the cross-references which may exist between these documents;
• it will make it easier creating cross-references between these documents;
• it will make it easier following cross-references between these documents;
• if a DITA map contains key definitions, then this map acts not only as a cross-reference creation/val-

idation context for its topics, but it also acts as a key space;
• if the "Easy Profiling" add-on has been installed, then the conditional processing profile selected for

the master document is automatically shared by all module documents;
• if the document view area is split in two parts, the module documents opened from a master document

will appear at the opposite of this master document. This allows to use the view of the master document
as a rudimentary navigation pane.

Options:

set

Create the document set specified by the master document being edited.

For this option to work, a documentSetFactory in XMLmind XML Editor - Configuration and De-
ployment element must have been declared in the configuration of the document being edited.

unset

Delete the document set containing the document being edited. This document may be a module
document or a master document.

toggle

Create the document set specified by the master document being edited if this set does not already
exist; delete the set otherwise. This option requires the document being edited to be a master docu-
ment, not a module document.

Command XXE.masterDocumentControl with option toggle is used to implement Tools → Use
as Master Document.

state

Returns "on" if the document being edited is contained in a document set. Returns "off" otherwise.

refresh

Update the document set containing the document being edited. This document may be a module
document or a master document.

Command XXE.masterDocumentControl with option refresh is automatically used when the
master document is saved to disk using File → Save.

reset

Recreate the document set containing the document being edited. This document may be a module
document or a master document.

5DITA map, DocBook 5.1+ assembly, Ebook, DocBook modular document such a book including chapters by the means of
XInclude, etc.

169

Commands written in the Java™ pro-
gramming language

http://docs.oasis-open.org/dita/dita/v1.3/os/part2-tech-content/archSpec/base/key-based-addressing.html
../profiling/profiling.pdf#profiling
../configure/configure.pdf#documentSetFactory
https://tdg.docbook.org/tdg/5.1/ch06.html
http://www.xmlmind.com/ebookc/_distrib/doc/manual/html/primer.html
http://www.w3.org/TR/xinclude/

Command XXE.masterDocumentControl with option reset is automatically used when the master
document is saved to disk using File → Save As.

Examples:

XXE.masterDocumentControl toggle

XXE.masterDocumentControl state

122. XXE.new

Parameter syntax:

[

category_name | '-'

template_name | '-'

 [save_file_or_URL | '-' ['[createOnly]']?]?

]?

Creates a new document by copying a named template (that is, a document template which has been
declared in an XXE configuration file).

When category_name and template_name are absent or specified as "-", the command displays the
File → New dialog box to let the user choose a document template. When this is the case and when
category_name is different from "-", the File → New dialog box preselects specified category.

Parameters:

category_name

Specifies the (case-insensitive) name of the category of the document template. A category consists
in one or more segments separated by character '/'.

By default, the category of a document template is the name of the configuration in which this
template has been specified.

Example 1: actual category : XHTML/1.0 or xhtml/1.0 (category "XHTML/1.0" includes all the
templates specified in configurations "XHTML Strict" and "XHTML Transitional").

Example 2: actual category : XHTML/5 or xhtml/5 (category "XHTML/5" includes all the templates
specified in configuration "XHTML 5").

Example 3: category which is in fact a configuration name: DocBook or docbook (the document
templates of DocBook 4 are not sorted into categories).

template_name

Specifies the (case-insensitive, possibly localized) name of a document template. Example: "Seite
(Streng)" ("Page (Strict)" in German).

Alternatively, you can specify the basename —with or without a file extension— of the file containing
the document template. Doing this should work whatever your locale. XHTML/1.0 example:
"page_strict.xhtml". DocBook example: "refentry".

170

Commands written in the Java™ pro-
gramming language

Note that the XXE.new command will fail if there are several document templates in specified cat-
egory having the same basename. XHTML/1.0 example: "page_strict". (XHTML/1.0 contains
both "page_strict.xhtml" and "page_strict.html".)

save_file_or_URL

When this argument is specified as a filename or URL, the newly created document is immediately
saved to specified location.

When this argument is specified as "-", the command displays the file chooser dialog box to let the
user specify a save location for the newly created document. After this, the newly created document
is immediately saved to specified location.

When this argument is absent, the newly created document is automatically given a save location
but it is not actually saved to this location (that is, the command behaves like menu item File →
New).

[createOnly]

Create the new document and save it to a file, but do not open the new document in XXE just after
creating it.

Returns CommandResult.DONE having newly created com.xmlmind.xml.doc.Document as its value
(for use by higher-level commands) or CommandResult.FAILED if specified template cannot be opened
or CommandResult.CANCELED if user has canceled the command.

Examples:

XXE.new

XXE.new - -

XXE.new "TEI Lite" -

XXE.new - - -

XXE.new "TEI Lite" - -

XXE.new - - /tmp/doc.xml

XXE.new docbook refentry

XXE.new XHTML/1.0 "HTML Page (Transitional)"

XXE.new xhtml/1.0 page_strict.html /tmp/contact.html

XXE.new "XHTML/1.0" page_strict.html /tmp/news.html [createOnly]

123. XXE.open

Parameter syntax:

['[readOnly]']?

[

 '[reopen]' |

 '[reopenIfNewer]' |

 ('[checkIsOpened]' S file_name_or_URL) |

file_name_or_URL

]?

Opens a document in XXE.

171

Commands written in the Java™ pro-
gramming language

Without a parameter, this command displays the file chooser dialog box to let the user specify which
document to open.

Parameters:

[readOnly]

This parameter is a modifier which allows to open in read-only mode the document specified by the
other parameters.

[reopen]

Reopens document currently opened in XXE. Useful to implement a ``revert to saved'' command.

[reopenIfNewer]

Reopens document currently opened in XXE, but only if it has been modified by an external applic-
ation.

If the document currently opened in XXE has not been modified by an external application, this
command does nothing at all, succeeds and returns current com.xmlmind.xml.doc.Document.

Note that this option works exactly like [reopen] if the document is stored on a HTTP or FTP
server. That is, XXE will only check the dates of local files.

[checkIsOpened]

The command cannot be executed unless specified document has been opened in XXE. If specified
document is already opened in XXE, this command just returns it (a com.xmlmind.xml.doc.Docu-
ment object) which may be useful to write higher-level commands.

file_name_or_URL

Opens specified document.

Returns CommandResult.DONE having newly opened com.xmlmind.xml.doc.Document as its value (for
use by higher-level commands), CommandResult.FAILED if specified document cannot be opened or
CommandResult.CANCELED if user has canceled the command.

See XXE.save [172] for an example of use for this command.

124. XXE.save

Parameter syntax:

['[ifNeeded]' | [checkIsSaved]]?

Saves document currently opened in XXE.

[ifNeeded]

With this option, this command does nothing at all but can be successfully executed if current doc-
ument does not need to be saved.

Without this option, this command cannot be executed if current document does not need to be
saved.

This option is useful in macro commands such as the one in the first example below.

172

Commands written in the Java™ pro-
gramming language

[checkIsSaved]

With this option, the command does nothing at all. However it cannot be successfully executed unless
the current document does not need to be saved.

This option is useful to write macro commands such as the one in the second example below.

Returns CommandResult.FAILED if document cannot be saved or if user has canceled the command.
Otherwise, returns CommandResult.DONE.

Example 1:

 <command name="editXMLSource">

 <macro>

 <sequence>

 <command name="XXE.save" parameter="[ifNeeded]" />

 <command name="run" parameter='emacs "%D"' />

 <command name="XXE.open" parameter="[reopenIfNewer]" />

 </sequence>

 </macro>

 </command>

1. Save the document being edited, if this is needed.

2. Load it in external text editor GNU Emacs. Use this text editor to modify it or simply to view it.

3. Reload the document in XXE, but only if it has been modified using Emacs.

Example 2: Do not attempt to convert the DITA document to XHTML if this document needs to be
saved.

<command name="dita.convertToXHTML">

 <macro>

 <sequence>

 <command name="XXE.save" parameter="[checkIsSaved]" />

 <command name="selectConvertedFile"

 parameter="saveDirectoryURL" />

 <command name="dita.toXHTML" parameter='"%_"' />

 </sequence>

 </macro>

 </command>

125. XXE.saveAll

Parameter syntax:

['[ifNeeded]']?

Saves all the documents (which actually need to be saved) currently opened in XXE.

[ifNeeded]

Without this option, this command cannot be executed if no documents at all need to be saved.

173

Commands written in the Java™ pro-
gramming language

With this option, this command does nothing but can be successfully executed even when no docu-
ments at all need to be saved.

Returns CommandResult.FAILED if no documents at all need to be saved (when [ifNeeded] is not
specified) or if some of the documents which need to be saved, cannot be saved. Otherwise, returns
CommandResult.DONE.

Example: converting a map to PDF requires all the topics referenced in this map to have been saved to
disk.

 <command name="map.convertToPDF">

 <macro>

 <sequence>

 <command name="XXE.saveAll" parameter="[ifNeeded]" />

 <command name="selectConvertedFile"

 parameter="saveFileURLWithExtension=pdf" />

 <command name="map.toPDF" parameter="%_" />

 </sequence>

 </macro>

 </command>

126. XXE.setReadOnly

Parameter syntax:

['true'|'false'|'toggle']? [file_name | URL]?

Changes the state of specified document from read-only to editable or the other way round.

Unlike command setReadOnly [153], this command also acts on the write lock, if any, of specified
document:

• When the state of a locked document is changed from editable to read-only, the lock is automatically
removed.

• When the state of a document is changed from read-only to editable (and the user wishes her/his
documents to be locked), a lock is automatically added.

Parameters:

true

Ensures that specified document is in read-only state.

false

Ensures that specified document is in editable state.

toggle

Changes the state of specified document from read-only to editable or the other way round. This is
the default option.

file_name or URL

Specifies document location. By default, applies to the current document.

174

Commands written in the Java™ pro-
gramming language

Returns null.

127. XXE.saveAs

Parameter syntax:

[file_name | URL]?

Saves document being edited to a different location.

Without a parameter, this command displays the file chooser dialog box to let the user specify the docu-
ment location.

Parameters:

file_name or URL

Specifies document location.

Returns CommandResult.FAILED if an error occurred when saving the document or if user has canceled
the command. Otherwise, returns CommandResult.DONE.

128. A generic, parameterizable, table editor command

Parameter syntax:

'insertColumnBefore'|'insertColumnAfter'|

'cutColumn'|'copyColumn'|

'pasteColumnBefore'|'pasteColumnAfter'|

'deleteColumn'|

'insertRowBefore'|'insertRowAfter'|

'cutRow'|'copyRow'|

'pasteRowBefore'|'pasteRowAfter'|

'deleteRow'|

'incrColumnSpan'|'decrColumnSpan'|

'incrRowSpan'|'decrRowSpan'

This command may be used to edit any table conforming to a model vaguely resembling the HTML
table model (table contains rows, themselves possibly contained in row groups, etc).

DescriptionParameterPrerequisite
in terms of
selection

Insert a column before column containing specified cell.insertColumn-

Before

A cell or an
element hav-
ing a cell an- Insert a column after column containing specified cell.insertColum-

nAfter
cestor must be
implicitly or

Cut to the clipboard the column containing specified cell.cutColumnexplicitly se-
lected. Copy to the clipboard the column containing specified cell.copyColumn

175

Commands written in the Java™ pro-
gramming language

DescriptionParameterPrerequisite
in terms of
selection

Paste copied or cut column before column containing specified cell.pasteColumn-

Before

Paste copied or cut column after column containing specified cell.pasteColum-

nAfter

Delete the column containing specified cell.deleteColumn

Sort all the rows of the table according to the string values of the
cells of the “selected column”. (The “selected column” is the column
containing specified cell.)

sortRows

Unless sortRows is immediately followed by (optional) parameter

'['

 'dictionary'|'numeric'|'lexicographic'

 [';descending'|';ascending']?

']'

a dialog box is displayed allowing to specify the following sort op-
tions:

Order

Dictionary is the language-specific alphabetical order. Example:
(Charles, best, Albert) is sorted as (Albert, best, Charles).

Numeric. The string value of a cell is expected to start with a
number. Example: (+15.0%, 1.50%, -20%) is sorted as (-20%,
1.50%, +15.0%).

Lexicographic is the order of Unicode characters. Example:
(Charles, best, Albert) is sorted as (Albert, Charles, best).

Dictionary and Numeric orders will cause this command to
fail, unless the language of the table can be determined (e.g.
lookup for the xml:lang attribute).

Direction

Ascending means: A to Z, low to high. Descending means: Z
to A, high to low.

Note that:

• Header/footer rows (e.g. thead) are never sorted.
• The contents of row groups (e.g. tbody) are sorted separately.

Insert a row before row containing specified cell.insertRowBe-

fore

A row must
be explicitly
selected. Insert a row before row containing specified cell.i n s e r -

tRowAfterOR a cell or
an element Cut to the clipboard the row containing specified cell.cutRow

having a cell

176

Commands written in the Java™ pro-
gramming language

http://www.unicode.org/

DescriptionParameterPrerequisite
in terms of
selection

Copy to the clipboard the row containing specified cell.copyRowancestor must
be implicitly Paste copied or cut row before row containing specified cell.pasteRowBe-

fore
or explicitly
selected.

Paste copied or cut row after row containing specified cell.p a s -

teRowAfter

Delete the row containing specified cell.deleteRow

Increment the number of columns spanned by specified cell.i n -

crColumnSpan

A cell or an
element hav-
ing a cell an- Decrement the number of columns spanned by specified cell.d e -

crColumnSpan
cestor must be
implicitly or

Increment the number of rows spanned by specified cell.incrRowSpanexplicitly se-
lected. Decrement the number of rows spanned by specified cell.decrRowSpan

Unlike the other commands contained in this reference, this command has no fixed name. It must be in-
stantiated and given a name using a command configuration element (see Section 4, “command” in XM-
Lmind XML Editor - Configuration and Deployment). It must also be parametrized using a simple spe-
cification contained in a property configuration element. See example below:

DITA simpletable example:

 <command name="dita.simpleTableEdit">

 <class>com.xmlmind.xmleditapp.cmd.table.GenericTableEdit</class>

 </command>

 <property name="dita.simpleTableEdit.tableSpecification">

 table=simpletable

 row=sthead:header strow

 cell=stentry

 </property>

This creates an instance of generic, parameterizable, table editor command com.xmlmind.xmled-
itapp.cmd.table.GenericTableEdit called dita.simpleTableEdit.

Because the table editor command is called dita.simpleTableEdit, a property called
dita.simpleTableEdit.tableSpecification should exist too. The value of this property maps
element names and attribute names to roles understood by the generic table editor command.

Example 1: "cell=th td" specifies that an element with name th or td should be considered by
the generic table editor as being a cell.

Example 2: "rowSpan=morerows+1" specifies that attribute morerows, if found in cell elements,
contains the number of additional rows spanned by the cell.

In the above example, the fact that the rowGroup=, rowSpan= and columnSpan= lines are missing
means that this table model does not have the concept of row groups and that there are no attributes
which could be used to specify the number of rows and the number of columns spanned by a cell.

177

Commands written in the Java™ pro-
gramming language

../configure/configure.pdf#command

The syntax of a table specification is:

spec -> table_spec row_group_spec? row_spec cell_spec

 row_span_spec? column_span_spec?

table_spec -> table= element_name_list \n

row_group_spec -> rowGroup= element_name_role_list \n

row_spec -> row= element_name_role_list \n

cell_spec -> cell= element_name_list \n

row_span_spec -> rowSpan= attribute_name_list \n

column_span_spec -> columnSpan= attribute_name_list \n

element_name_role_list -> name_role {S name_role}*

name_role -> name{role}?

role -> :header | :footer | :body

element_name_list -> name {S name}*

attribute_name_list -> name{+1}? {S name{+1}?}*

name = non_qualified_name | {namespace_URI}local_part

table=

Specifies the names of the elements which must be considered as being tables, that is, row group
containers or, directly, row containers (like in HTML 3.2 tables).

rowGroup=

Specifies the names of the elements which must be considered as being row groups, that is, row
containers. May be omitted if not relevant.

The name of an element may be optionally followed by :header if the corresponding row group is
a table header, :footer if the corresponding row group is a table footer and :body if the correspond-
ing row group is a table body. By default, a row group is considered to be a table body.

row=

Specifies the names of the elements which must be considered as being rows, that is, cell containers.

The name of an element may be optionally followed by :header if the corresponding row is a table
header, :footer if the corresponding row is a table footer and :body if the corresponding row is a
normal row. By default, a row is considered to be a normal row.

cell=

Specifies the names of the elements which must be considered as being cells.

178

Commands written in the Java™ pro-
gramming language

rowSpan=

Specifies the names of the attributes which are used to specify the number of rows spanned by a
cell. May be omitted if not relevant.

Use +1 to specify that the attribute contains an additional number of rows rather than the actual
number of rows spanned by a cell.

columnSpan=

Specifies the names of the attributes which are used to specify the number of columns spanned by
a cell. May be omitted if not relevant.

Use +1 to specify that the attribute contains an additional number of rows rather than the actual
number of rows spanned by a cell.

Example 1: the specification of an XHTML table would be:

table={http://www.w3.org/1999/xhtml}table

rowGroup={http...ml}tbody {http...ml}thead:header {http...ml}tfoot:footer

row={http...ml}tr

cell={http...ml}td {http...ml}th

rowSpan=rowspan

columnSpan=colspan

Notice how the XHTML namespace is specified before the local name of each element.

Example 2: a partial specification for CALS (DocBook 4; no namespace) tables would be:

table=tgroup entrytbl

rowGroup=tbody thead:header tfoot:footer

row=row

cell=entry

rowSpan=morerows+1

The fact that the columnSpan= line is missing means that there is no attribute which could be used to
specify the number of columns spanned by a cell.

179

Commands written in the Java™ pro-
gramming language

Appendix A. Description of the XML differencing
algorithm implemented by the Compare tool

1. Comparison with other approaches

Change TrackingXMLmind Compare
Tool

Generic XML Differ-
encing Tool

Show how changes
have been made, by

Show what has been
changed.

Show what has been
changed.

Main function

whom, when and pos-
sibly why.Inserting remarks in

XMLmind XML Editor
- Online Help in a revi-
sion allows to specify
by whom, when and
why.

Record insertions and
deletions in the revised

Compare two revisions
of the same initial docu-

Compare two arbitrary
XML files.

How does it work?

document, typically inment (in which the
the form of proprietary
processing-instructions.

comparison of revisions
has been enabled in
XMLmind XML Editor
- Online Help).

Yes.Yes.No.Needs to be activated
for a given document

Possibly yes, when the
number of changes be-
comes large.

Not significant.No.Performance penalty
when loading and sav-

ing the document

Possibly yes, when the
number of changes be-
comes large.

No.No.Performance penalty
when editing the docu-

ment

Yes. The increase in
size depends on the

Yes. The increase in
size depends on the

No.Increases the size of the
revised document

number of changes
made to the document.

number of elements
contained in the docu-
ment. See Section 2,
“Elements are given
serial numbers” [181].

No, cannot handle attrib-
utes.

Yes.Highly depends on the
quality of the underly-

Detects all changes

ing algorithm. Yes, for
some algorithms.

Yes.Yes.Yes.Allows to accept or re-
ject one or more

changes

Valid.Well-formed. In prac-
tice, generally valid.

Well-formed, may be
valid.

Validity of the docu-
ment after accepting or

180

../help/help.pdf#remarkMenu
../help/help.pdf#diffSupport.true
../help/help.pdf#diffSupport.true
../help/help.pdf#diffSupport.true

Change TrackingXMLmind Compare
Tool

Generic XML Differ-
encing Tool

rejecting one or more
changes

See also: "Approaches to change tracking in XML" by Robin La Fontaine.

2. Elements are given serial numbers

The XML differencing algorithm implemented in the Compare tool in XMLmind XML Editor - Online
Help requires all the elements to have a globally unique ID. This GUID, which is called a serial number,
is assigned by XMLmind XML Editor (XXE for short) to an element during its lifetime and will not
change no matter how you'll modify the content of this element.

Menu item Tools → Revisions → Enable the Comparison of Revisions in XMLmind XML Editor -
Online Help merely instructs XXE to systematically assign a serial number to all the elements contained
in the document being edited.

These serial numbers are all stored in <?xxe-sn> processing-instructions. Example:

<?xml version="1.0" encoding="ISO-8859-1"?>

<section version="5.0" xmlns="http://docbook.org/ns/docbook">

<?xxe-sn c09ov3m4pt -1udd9r6h3v1fj?>

<title><?xxe-sn c09ov3m4pt -1udd9r6h3v1fi?>Pangrams</title>

<para><?xxe-sn c09ov3m4pt -1udd9r6h3v1fh?>"The quick brown fox jumps over

 the lazy dog"

 ...

</section>

The data contained in a <?xxe-sn> processing-instruction is a globally unique 128-bit ID formatted as
follows: most_significant_64_bits_in_base36 SPACE least_significant_64_bits_in_base36.

Note that enabling the comparison of revisions should not slowdown XXE perceptibly. That's why there
is an option in XMLmind XML Editor - Online Help which allows to automatically enable the comparison
of revisions in all the documents created and edited using XXE.

3. A simple XML differencing algorithm

The XML differencing algorithm implemented in the Compare tool in XMLmind XML Editor - Online
Help may be described as follows:

1. Begin by comparing the root element of the original document to the root element of the revised
document.

2. If the element in the original document (let's call it the original element) and the element in the revised
document (let's call it the revised element) have the same serial number, then compare their contents.
Otherwise consider that these elements are completely different.

3. Trivially compare the attributes of the original element to the attributes of the revised element.

181

Description of the XML differencing al-
gorithm implemented by the Compare

tool

https://www.deltaxml.com/support/documents/articles-and-papers/xml-change-tracking-review.pdf
../help/help.pdf#comparePane
../help/help.pdf#diffSupport.true
../help/help.pdf#autoDiffSupport.true
../help/help.pdf#comparePane

4. The child nodes of an element are converted to a sequence of comparable items prior to be compared:
• A text item is added to the sequence for each word contained in the element1.
• A serial number item is added for each child element contained in the element.
• A comment item is added for each XML comment contained in the element.
• A processing-instruction item is added for each processing-instruction contained in the element.
• An inclusion directive item is added for each range of included nodes contained in the element.

Example:

<p>The <i>quick brown</i> fox jumps over the lazy dog.</p>

gives:

"The ", element_7223, " fox", " jumps", " over", " the ", element_10087, " dog."

5. The sequence of items of the original element is compared to the sequence of items of the revised
element using the well-known Unix diff algorithm2 here applied to comparable items rather than to
text lines:
• Two text items are equal if they contain exactly the same text.
• Two serial number items are equal if they have the same serial number.
• Two comment items are equal if they contain exactly the same text.
• Two processing-instructions items are equal if they have the same target and contain exactly the

same text.
• Two inclusion directive items are equal they have exactly the same XML contents. For example,

<xi:include href="vars.xml" xpointer="copyright"/> and <xi:include xpointer="copy-
right" href="vars.xml"/> are equal, while <xi:include href="vars.xml" xpointer="copy-
right"/> and <xi:include href="vars.xml" xpointer="notice"/> differ.

6. Compare each child element of the original element to the child element element having the same
serial number in the revised element. Proceed as explained starting from the Compare attributes [181]
step.

Notes:

• The above algorithm is fast and 100% accurate by design.

• The comparison of attributes, comments and processing-instructions is not as fine-grained as the
comparison of elements. For example, if attribute class is "ui-widget" in the original element and
"ui-widget ui-state-highlight" in the revised element, the algorithm will tell you that attribute
class has changed. It will not tell you that word "ui-state-highlight" has been added at the end
of attribute class.

• Included contents (also called transcluded contents) found in the original element and in the revised
element are never compared. Instead, the corresponding inclusion directives (xi:include, DITA
conref, etc) implicitly3 found in the original element and in the revised element are compared.

1If the element has or inherits xml:space="preserve", a text item is added for each text line contained in the element.
2"A file comparison program" by Webb Miller and Eugene W. Myers, 1985.
3By default, inclusion directives are always transcluded by XXE. Hence such directives do not really exist in the document being
edited. Instead, they are recreated by XXE each time the document is saved to disk.

182

Description of the XML differencing al-
gorithm implemented by the Compare

tool

Appendix B. Format of the revision history
Menu item Tools → Revisions → Store All Revisions in the Document in XMLmind XML Editor -
Online Help (and also this option in XMLmind XML Editor - Online Help) allows to store the entire re-
vision history of a document in the XML file containing this document.

The revision history is stored in a single <?xxe-revisions> processing-instruction found at the end of
the document. Short example:

 ambiguë d’un cœur qui au zéphyr préfère les jattes de

 kiwi</foreignphrase>".</para>

</section>

<?xxe-revisions

#3 2015-09-04T14:35:48Z charles

#2 2015-09-04T14:29:20Z bart

1sPEAAABiXgAEocmAAAHBXOHExMIQwsAhRaEVw==

#1 2015-09-04T14:26:28Z john

1sPEAAABhyYAgQmHJQA/LBhmIjxmb3JlaWduOj0iZnJlPz5Qb3J0ZXogY2UgdmlldXggd2hpc2t5

IGF1IGp1Z2UgYmxvbmQgZnVtZTwvPiJzhAwTB0OBKlMx3zMGEwqTBxMEAQljBvczBAEEUyQBJzME

AQcjDgECkwpjCwCEPBREMoEthAI8g3QhFg+CIoETcJSCBw==

?>

The format of the <?xxe-revisions> processing-instruction is described as follows:

• This processing-instruction contains one or more revisions separated by newlines.

• A revision consists in a header followed by a binary delta encoded in base 64.

• A header, for example:

#1 2015-09-04T14:26:28Z john

contains the revision number (1), the date this revision was saved to disk (2015-09-04T14:26:28Z)
and the author of this revision (john).

• First header is about the most recent revision. Hence it is not followed by a binary delta.

For example, let's suppose the above snippet comes from document doc.xml. Most recent revision
is #3 and corresponds to the contents of doc.xml. It has been created by charles on 2015-09-
04T14:35:48Z.

• The binary delta of revision #N is the result of applying the VCDIFF encoding algorithm between a
normalized XML form of the content of revision #N+1 and a normalized XML form of the content of
revision #N.

For example, the normalized XML form of doc.xml is simply the UTF-8 bytes of doc.xml saved
unindented (of course, without the <?xxe-revisions> processing-instruction). The result of applying
the VCDIFF decoding algorithm to the UTF-8 bytes of doc.xml, that is, revision #3, and the binary
delta "1sPEAAABiXgAEocmAAAHBXOHExMIQwsAhRaEVw==" results in the UTF-8 bytes of revision #2
of doc.xml.

183

../help/help.pdf#diffSupport.revisions
../help/help.pdf#autoDiffSupport.revisions
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/VCDIFF

	XMLmind XML Editor - Commands
	Table of Contents
	Part I. Guide
	Chapter 1. What is a command?
	Chapter 2. Writing macro-commands
	1. How commands are executed
	2. A sequence of commands
	3. Alternative commands
	4. Testing if a command can be executed
	5. The "%_" variable
	6. Macro-variables
	7. Simple use of named variables
	8. General use of get
	9. Variables mapped to the selection in XXE
	10. Contextual commands

	Part II. Reference
	Chapter 3. Menu commands
	1. Reference
	2. Redefining or extending the right-click, contextual, popup menu

	Chapter 4. Macro commands
	1. Reference
	1.1. Pass and fail cheat sheet
	1.2. Macro-variables
	1.3. XPath variables
	1.3.1. User variables
	1.3.2. Predefined variables

	2. Running XED scripts in a macro
	3. Examples

	Chapter 5. Process commands
	1. Reference
	1.1. Attributes
	1.2. Element copyDocument
	1.2.1. Attributes
	1.2.2. Element extract
	1.2.3. Element resources

	1.3. Element convertImage
	1.3.1. Parameters supported by the built-in Java image toolkit

	1.4. Element copyProcessResources
	1.5. Element transform
	1.5.1. Using a custom XSLT style sheet

	1.6. Element processFO
	1.7. Element upload
	1.8. Element post
	1.9. Element read
	1.10. Element mkdir
	1.11. Element rmdir
	1.12. Element delete
	1.13. Element copy
	1.14. Element zip
	1.15. Element jar
	1.16. Element shell
	1.17. Element invoke
	1.18. Element subProcess
	1.19. Process variables

	2. Commented examples
	2.1. Convert explicitly or implicitly selected para to a formalpara
	2.2. Convert a DocBook document to RTF
	2.3. Convert ImageDemo document to HTML

	Chapter 6. Commands written in the Java™ programming language
	1. alert
	2. add
	3. addAttribute
	4. addBlockInFlow
	5. autoSpellChecker
	6. beep
	7. cancelSelection
	8. center
	9. checkValidity
	10. confirm
	11. contextualMenu
	12. convert
	13. convertCase
	14. copy
	15. copyAsInclusion
	16. copyChars
	17. copyImage
	18. cut
	19. declareNamespace
	20. demoteListItem
	20.1. Configuring the promoteListItem and demoteListItem commands

	21. delete
	22. deleteChar
	23. deleteSelectionOrDeleteChar
	24. deleteSelectionOrJoinBlockOrDeleteChar
	25. deleteWord
	26. diffSupport
	27. drag
	28. drop
	29. editAttribute
	30. editAttributes
	31. editObject
	32. editPITarget
	33. editMediaInfo
	34. ensureSelectionAt
	35. execute
	36. executeMenuItem
	37. extendSelectionAt
	38. extractObject
	39. fail
	40. formatTextAs
	40.1. Specifying an element template for use by command formatTextAs
	40.2. Filtering the text pasted in the document

	41. include
	42. insert
	43. insertCharByName
	44. insertCharSequence
	45. insertControlChar
	46. insertNewlineOrSplitBlock
	47. insertNode
	48. insertOrOverwriteString
	49. insertSpecialChars
	50. insertSameBlock
	50.1. Specifying splittable blocks

	51. insertString
	52. insertTextOrMoveDot
	53. join
	54. listAnchors
	55. listBindings
	56. listPlugins
	57. listRepeatable
	58. moveDotTo
	59. moveElement
	60. normalizeWhiteSpacePre
	61. overwriteMode
	62. overwriteString
	63. pass
	64. paste
	65. pasteAs
	66. pasteImageAs
	67. pasteSystemSelection
	68. pick
	69. preview
	70. promoteListItem
	71. prompt
	72. putAttribute
	73. recordMacro
	74. redo
	75. refresh
	76. reinclude
	77. remark
	78. removeAttribute
	79. repeat
	80. replace
	81. resizeImage
	82. resizeTableTemplate
	83. resizeCALSTableTemplate
	84. run
	85. search
	86. searchReplace
	87. searchReplaceElement
	88. selectAt
	89. selectFile
	90. selectConvertedFile
	91. selectLink
	92. selectNode
	92.1. List of element names or node types
	92.2. OrNone, OrNode, OrElement modifiers

	93. selectNodeAt
	94. selectText
	95. selectTo
	96. setProperty
	97. setReadOnly
	98. setObject
	99. showContentModel
	100. showElementReference
	101. showMatchingChar
	102. showColumnRowLabels
	103. spellCheck
	104. split
	105. start
	106. status
	107. toggleCollapsed
	108. toggleTextStyle
	109. undo
	110. uninclude
	111. updateInclusions
	112. viewObject
	113. webSearch
	113.1. Declaring search engines

	114. wrap
	115. xIncludeText
	116. xpathSearch
	117. XXE.close
	118. XXE.compare
	119. XXE.edit
	120. XXE.editInclusion
	121. XXE.masterDocumentControl
	122. XXE.new
	123. XXE.open
	124. XXE.save
	125. XXE.saveAll
	126. XXE.setReadOnly
	127. XXE.saveAs
	128. A generic, parameterizable, table editor command

	Appendix A. Description of the XML differencing algorithm implemented by the Compare tool
	1. Comparison with other approaches
	2. Elements are given serial numbers
	3. A simple XML differencing algorithm

	Appendix B. Format of the revision history

